MATERIAL SAFETY DATA SHEET

PS, PSH, PSG and PG
Valve Regulated (VRLA) Batteries
Absorbed Electrolyte (AGM)

Section 1 - Product Identification

Manufacturers Name
Power-Sonic Corporation,
7550 Panasonic Way
San Diego, CA 92154

Emergency Telephone Numbers:
CHEMTREC (Domestic): (800) 424-9300
CHEMTREC (International): (703) 527-3887

Telephone Number for Information:
Power-Sonic Corporation: (619) 661-2020

Date Issued: July 1, 2009

The information contained within is provided as a service to our customers and is for their information only. The information and recommendations set forth herein are made in good faith and are believed to be accurate at the date compiled. Power-Sonic Corporation makes no warranty expressed or implied.

Section 2 - Hazardous Ingredients/Identity Information

<table>
<thead>
<tr>
<th>Components</th>
<th>CAS Number</th>
<th>Approx Wt.%</th>
<th>OSHA PEL (µg/m³)</th>
<th>ACGIH TLV (µg/m³)</th>
<th>NIOSH (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Lead/Lead Compounds</td>
<td>7439-92-1</td>
<td>65%-75%</td>
<td>50</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>Tin</td>
<td>7440-31-5</td>
<td><0.5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440-70-2</td>
<td><0.1%</td>
<td>2000</td>
<td>2000</td>
<td>N/A</td>
</tr>
<tr>
<td>Electrolyte: Dilute sulfuric Acid</td>
<td>7664-93-9</td>
<td>14-20%</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Fiberglass Separator</td>
<td>-</td>
<td>5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Case Material: Acrylonitrile Butadine Styrene (ABS)</td>
<td>9003-56-9</td>
<td>5-10%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Inorganic lead and electrolyte (sulfuric acid) are the main components of every Valve Regulated Lead Acid battery supplied by Power-Sonic Corporation. Other ingredients may be present dependent upon the specific battery type. For additional information contact Power-Sonic Corporation Technical Department.

Section 3 - Physical/Chemical Characteristics

<table>
<thead>
<tr>
<th>Components</th>
<th>Density</th>
<th>Melting Points</th>
<th>Solubility (H2O)</th>
<th>Odor</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>11.34</td>
<td>621 °F</td>
<td>None</td>
<td>None</td>
<td>Silver-Gray</td>
</tr>
<tr>
<td>Lead Sulfate</td>
<td>6.20</td>
<td>1950 °F</td>
<td>40mg/l (60 °F)</td>
<td>None</td>
<td>White Powder</td>
</tr>
<tr>
<td>Lead Dioxide</td>
<td>9.40</td>
<td>554 °F</td>
<td>None</td>
<td>None</td>
<td>Brown Powder</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>About 1.30</td>
<td>203-240 °F</td>
<td>100%</td>
<td>Sharp penetrating pungent</td>
<td>Clear Colorless Liquid</td>
</tr>
<tr>
<td>Fiberglass Separator</td>
<td>N/A</td>
<td>N/A</td>
<td>Slight</td>
<td>None</td>
<td>White Fibrous</td>
</tr>
<tr>
<td>Case Material: Acrylonitrile Butadine Styrene (ABS)</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>Solid</td>
</tr>
</tbody>
</table>

Continued on next page
Section 4 – Flammability Data

<table>
<thead>
<tr>
<th>Components</th>
<th>Flashpoint</th>
<th>Explosive Limit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead and Sulfuric Acid</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>LEL = 4.1%</td>
<td></td>
<td>Sealed batteries can emit hydrogen if overcharged (float voltage > 2.40 VPC)</td>
</tr>
<tr>
<td>Fiberglass Separator</td>
<td>N/A</td>
<td>N/A</td>
<td>Toxic vapors may be released. In case of fire, wear self contained breathing apparatus</td>
</tr>
<tr>
<td>Acrylonitrile Butadine Styrene (ABS)</td>
<td>None</td>
<td>N/A</td>
<td>Temp over 527°F (300°C) may release combustible gases. In case of fire, wear self contained breathing apparatus</td>
</tr>
</tbody>
</table>

Section 5 - Reactivity Data

<table>
<thead>
<tr>
<th>Stability</th>
<th>Conditions to Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable</td>
<td>Unstable</td>
</tr>
<tr>
<td>Stable</td>
<td>Prolonged overcharge on high current, ignition sources. Sulfuric acid remains stable at all temperatures</td>
</tr>
</tbody>
</table>

Incompatibility (Materials to Avoid)

Sulfuric acid: Contact with combustibles and organic materials may cause fire and explosion. Also reacts violently with strong reducing agents, metals, sulfur trioxide gas, strong oxidizers, and water. Contact with metals may product toxic sulfur dioxide fumes and may release flammable hydrogen gas.

Lead Compounds: Avoid contact with strong acids, bases, halides, halogenates, potassium nitrate, permanganate, peroxides, nascent hydrogen, and reducing agents.

Hazardous Decomposition or Byproducts

Sulfuric acid: Sulfur trioxide, carbon monoxide, sulfuric acid mist, sulfur dioxide, and hydrogen sulfide.

Lead Compounds: High temperatures above the melting point are likely to produce toxic metal fume, vapor, or dust; contact with strong acid or base or presence of nascent hydrogen may generate highly toxic arsine gas. Hazardous Polymerization.

Polymerization: **Sulfuric acid** will not polymerize

Decomposition Products: Sulfuric Dioxide, Trioxide, Hydrogen Sulfide, Hydrogen.

Conditions to Avoid: Prohibit smoking, sparks, etc. from battery charging area. Avoid mixing acid with other chemicals.

Section 6 - Health Hazard Data

Routes of Entry

Sulfuric acid: Harmful by all routes of entry

Lead compounds: Hazardous Exposure can occur only when product is heated, oxidized, or otherwise processed or damaged to create dust, vapor or fume.

Inhalation

Sulfuric acid: Breathing sulfuric acid vapors and mists may cause severe respiratory problems.

Lead compounds: Dust or fumes may cause irritation of upper respiratory tract or lungs.

Fiberglass Separator: Fiberglass is an irritant to the upper respiratory tract, skin and eyes. For exposure up to 10°F/ use MSA Comfoill with type H filter. Above 10°F use Ultra Twin with type H filter. This product is not considered carcinogenic by NTP or OSHA.

Skin Contact

Sulfuric acid: Severe irritation, burns and ulceration.

Lead compounds: Not absorbed through the skin
Ingestion

Sulfuric acid: May cause severe irritation of the mouth, throat, esophagus, and stomach.
Lead compounds: May cause abdominal pain, nausea, vomiting, diarrhea, and severe cramping. Acute ingestion should be treated by a physician.

Eye Contact

Sulfuric acid: Severe irritation, burns, cornea damage and possible blindness.
Lead Compounds: May cause eye irritation.

Acute Health Hazards

Sulfuric acid: Severe skin irritation, burns, damage to cornea may cause blindness, upper respiratory irritation.
Lead compounds: May cause abdominal pain, nausea, headaches, vomiting, loss of appetite, severe cramping, muscular aches and weakness, and difficulty sleeping. The toxic effects of lead are cumulative and slow to appear. It affects the kidneys, reproductive and central nervous systems. The symptoms of lead overexposure are listed above. Exposure to lead from a battery most often occurs during lead reclamation operations through the breathing or ingestion of lead dust or fumes.

Chronic Health Hazards

Sulfuric acid: Possible scarring of the cornea, inflammation of the nose, throat and bronchial tubes, possible erosion of tooth enamel.
Lead compounds: May cause anemia, damage to kidneys and nervous system, and damage to reproductive system in both males and females.

Carcinogenicity

Sulfuric acid: The National Toxicological Program (NTP) and The International Agency for Research on Cancer (IARC) have classified strong inorganic acid mist containing sulfuric acid as a Category 1 carcinogen, a substance that is carcinogenic to humans. The ACGIH has classified strong inorganic acid mist containing sulfuric acid as an A2 carcinogen (suspected human carcinogen). These classifications do not apply to liquid forms of sulfuric acid or sulfuric acid solutions contained within a battery. Inorganic acid mist (sulfuric acid mist) is not generated under normal use of this product. Misuse of the product, such as overcharging, may result in the generation of sulfuric acid mist.
Lead compounds: Human studies are inconclusive regarding lead exposure and an increased cancer risk. The EPA and the International Agency for Research on Cancer (IARC) have categorized lead and inorganic lead compounds as a B2 classification (probable/possible human carcinogen) based on sufficient animal evidence and inadequate human evidence.

Medical Conditions Generally Aggravated by Exposure

Inorganic lead and its compounds can aggravate chronic forms of kidney, liver, and neurological diseases. Contact of battery electrolyte (acid) with the skin may aggravate skin diseases such as eczema and contact dermatitis. Overexposure to sulfuric acid mist may cause lung damage and aggravate pulmonary conditions.

Emergency and First Aid Procedures

Inhalation
Sulfuric acid: Remove to fresh air immediately. If breathing is difficult, give oxygen
Lead compounds: Remove from exposure, gargle, wash nose and lips, consult physician

Ingestion
Sulfuric acid: Do not induce vomiting, consult a physician immediately.
Lead compounds: Consult a physician immediately

Eyes
Sulfuric acid: Flush immediately with water for 15 minutes, consult a physician.
Lead compounds: Flush immediately with water for 15 minutes, consult a physician

Skin
Sulfuric acid: Flush with large amounts of water for at least 15 minutes, remove any contaminated clothing. If irritation develops seek medical attention.
Lead compounds: Wash with soap and water.
Section 7 - Precautions for Safe Handling and Use

Steps to be Taken in Case Material is Released or Spilled
There is no release of material unless the case is damaged or battery is misused/overcharged. If release occurs stop flow of material, contain/absorb all spills with dry sand, earth, or vermiculite. Do not use combustible materials. Neutralize spilled material with soda ash, sodium bicarbonate, lime, etc. Wear acid-resistant clothing, boots, gloves, and face shield. Dispose of as hazardous waste. Do not discharge acid to sewer.

Waste Disposal Method
Spent Batteries - send to secondary lead smelter for recycling. Follow applicable federal, state and local regulations. Neutralize as in preceding step. Collect neutralized material in sealed container and handle as hazardous waste as applicable. A copy of this MSDS must be supplied to any scrap dealer or secondary lead smelter with the battery.

Precautions to be Taken in Handling and Storing
Store batteries in a cool, dry, well ventilated area that are separated from incompatible materials and any activities which may generate flames, sparks, or heat. Keep all metallic articles that could contact the negative and positive terminals on a battery and create a short circuit condition.

Electrical Safety
Due to the battery’s low internal resistance and high power density, high levels of short circuit current can be developed across the battery terminals. Do not rest tools or cables on the battery. Use insulated tools only. Follow all installation instructions and diagrams when installing or maintaining battery systems.

Fiberglass Separator
Fiberglass is an irritant to the upper respiratory tract, skin and eyes. For exposure up to 10°F use MSA Comfoll with type H filter. Above 10°F use Ultra Twin with type H filter. This product is not considered carcinogenic by NTP or OSHA.

Section 8 - Control Measures

Respiratory Protection
None required under normal conditions. If battery is overcharged and concentrations of sulfuric acid are known to exceed PEL use NIOSH or MSH approved respiratory protection.

Engineering Controls
Store and handle batteries in a well ventilated area. If mechanical ventilation is used, components must be acid resistant.

Protective Gloves
None needed under normal conditions. If battery case is damaged use rubber or plastic elbow length gauntlets.

Eye Protection
None needed under normal conditions. If handling damaged or broken batteries use chemical splash goggles or face shield.

Other Protective Clothing or Equipment
None needed under normal conditions. In case of damaged or broken battery use an acid resistant apron. Under severe exposure or emergency conditions wear acid resistant clothing.

Work Hygienic Practices
Handle batteries carefully to avoid damaging the case. Do not allow metallic articles to contact the battery terminals during handling. Avoid contact with the internal components of the battery.

Continued on next page
Section 9 Regulatory Information

NFPA Hazard Rating for Sulfuric Acid

Transportation Batteries, Non-Restricted Status

North America Surface and Air Shipments

Our nonspillable lead acid batteries are listed in the U.S. Department of Transportation’s (DOT) hazardous materials regulations but are excepted from these regulations since they meet all of the following requirements found at 49 CFR 173.159(d) – NMFC # 60680 Class 65.

- When offered for transport, the batteries are protected against short circuits and securely packaged as required by 49 CFR 173.159(d) (1);
- The batteries and outer packaging are marked with the words NONSPILLABLE BATTERY as required by 49 CFR 173.159(d) (2); and
- The batteries comply with the vibration and pressure differential tests found in 49 CFR 173.159(d) (3) and “crack test” found at 49 CFR 173.159(d) (4).

International

Our non-spillable lead acid batteries also are excepted from the international hazardous materials (also known as “dangerous goods”) regulations since they comply with the following requirements:

- The vibration and pressure differential tests found in Packing Instruction 806 and Special Provision A67 of the International Air Transport Association (IATA) Dangerous Goods Regulations

The vibration and pressure differential tests found in Packing Instruction 806 and Special Provision A67 of the International Civil Aviation Organization (ICAO) Technical Instructions for the Safe Transport of Dangerous Goods by Air; and

- The vibration, pressure differential, and “crack” tests found in Special Provision 238.1 and 238.2 of the International Maritime Dangerous Goods (IMDG) Code

Regulatory Information

RCRA: Spent lead acid batteries are not regulated as hazardous waste by the EPA when recycled, however state and international regulations may vary.

CERCLA (superfund) and EPCRA:

(a) Reportable Quantity (RQ) for spilled 100% sulfuric acid under CERCLA (superfund) and EPCRA (Emergency Planning Community Right to Know Act) is 1,000lbs. State and local reportable quantities for spilled sulfuric acid may vary.
(b) Sulfuric acid is a listed “Extremely Hazardous Substance” under EPCRA with a Threshold Planning Quantity (TPQ) of 1,000lbs.
(c) EPCRA Section 302 Notification is required if 1,000lbs. or more of sulfuric acid is present at one site. The quantity of sulfuric acid will vary by battery type. Contact Power-Sonic Corporation for additional information.
(d) EPCRA Section 312 Tier 2 reporting is required for batteries if sulfuric acid is present in quantities of 500lbs. or more and/or lead is present in quantities of 10,000lbs. or more.
(e) Supplier Notification: This product contains toxic chemicals which may be reportable under EPCRA Section 313 Toxic Chemical Release Inventory (Form R) requirements. If you are a manufacturing facility under SIC codes 20 through 39 the following information is provided to enable you to complete the required reports:
Regulatory Information continued:

(f) Toxic Chemical CAS Number Approximate % by weight

<table>
<thead>
<tr>
<th>Toxic Chemical</th>
<th>CAS Number</th>
<th>Approximate % by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>7439-92-1</td>
<td>60</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>7664-93-9</td>
<td>30</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440-38-2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

If you distribute this product to other manufacturers in SIC codes 20 through 39, this information must be provided with the first shipment in a calendar year. The Section 313 supplier notification requirement does not apply to batteries which are “consumer products”. Not present in all battery types. Contact Power-Sonic Corporation for further information.

TSCA

Ingredients in Power-Sonic Corporation’s batteries are listed in the TSCA Registry as follows:

<table>
<thead>
<tr>
<th>Components</th>
<th>CAS Number</th>
<th>TSCA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte Sulfuric Acid (H2SO4)</td>
<td>7664-93-9</td>
<td>Listed</td>
</tr>
<tr>
<td>Inorganic Lead Compound: Lead (Pb)</td>
<td>7439-92-1</td>
<td>Listed</td>
</tr>
<tr>
<td>Lead Oxide (PbO)</td>
<td>1317-36-8</td>
<td>Listed</td>
</tr>
<tr>
<td>Lead Sulfate (PbSO4)</td>
<td>7446-14-2</td>
<td>Listed</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>7440-38-2</td>
<td>Listed</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>7440-70-2</td>
<td>Listed</td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>7440-31-5</td>
<td>Listed</td>
</tr>
</tbody>
</table>