User’s Guide

Shop online at

omega.com

e-mail: info@omega.com

For latest product manuals:

omegamanual.info

ISO 9001
CERTIFIED
CORPORATE QUALITY
STAMFORD, CT

ISO 9002
CERTIFIED
CORPORATE QUALITY
MANCHESTER, UK

DP63000A-I
DP63000B-I

Digital Panel Meter

LP0694A
OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, human applications.
GENERAL DESCRIPTION

The DP63000 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. This unit accepts a DC Current input signal and provides a display in the desired unit of measure. The meter also features minimum and maximum display capture, display offset, units indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The DP63000 display has 0.48” (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the DP63000 can be easily expanded with the addition of option modules. Setpoint capability is field installable with the addition of the setpoint output modules. Serial communications capability for RS232 or RS485 is added with a serial option module.

The DP63000 can be powered from an optional Power Supply (Model Number DP6-MLPS1), that attaches directly to the back of a DP63000. The DP6-MLPS1 is powered from 85 to 250 V AC and provides up to 400 mA to drive the unit and sensors.

CURRENT

This unit is the DC Current meter. It features 4 current input ranges, that are selected by the user via a programming jumper and software input range selection. The ranges consist of following: 200 μA, 2 mA, 20 mA, or 200 mA. Users should select the appropriate current range that covers their maximum signal input.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15” (54.6) H x 3.00” (76.2) W.
GENERAL METER SPECIFICATIONS

1. **DISPLAY**: 5 digit LCD 0.48" (12.2 mm) high digits
 DP63000A-I: Reflective LCD with full viewing angle
 DP63000B-I: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.

2. **POWER**: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use a DP6-MLPS1 or a Class 2 or SELV rated power supply.

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>DISPLAY COLOR</th>
<th>INPUT CURRENT @ 9 VDC WITHOUT DP6-RLY0</th>
<th>INPUT CURRENT @ 9 VDC WITH DP6-RLY0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP63000A-I</td>
<td>---</td>
<td>10 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>DP63000B-I</td>
<td>Red (max intensity)</td>
<td>85 mA</td>
<td>115 mA</td>
</tr>
<tr>
<td>DP63000B-B</td>
<td>Green (max intensity)</td>
<td>95 mA</td>
<td>125 mA</td>
</tr>
</tbody>
</table>

3. **INPUT RANGES**: Jumper Selectable
 D.C. Currents: 200 μA, 2 mA, 20 mA, or 200 mA

4. **SIGNAL INPUTS**:

<table>
<thead>
<tr>
<th>INPUT RANGE</th>
<th>ACCURACY @ 23 °C, less than 85% RH</th>
<th>IMPEDANCE</th>
<th>MAX INPUT SIGNAL</th>
<th>RESOLUTION</th>
<th>TEMP. COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 μA</td>
<td>0.1% of span</td>
<td>1.11 KΩ</td>
<td>15 mA</td>
<td>10 nA</td>
<td>70 ppm / °C</td>
</tr>
<tr>
<td>2 mA</td>
<td>0.1% of span</td>
<td>11 Ω</td>
<td>50 mA</td>
<td>1 μA</td>
<td>70 ppm / °C</td>
</tr>
<tr>
<td>20 mA</td>
<td>0.1% of span</td>
<td>11 Ω</td>
<td>150 mA</td>
<td>1 μA</td>
<td>70 ppm / °C</td>
</tr>
<tr>
<td>200 mA</td>
<td>0.1% of span</td>
<td>1 Ω</td>
<td>500 mA</td>
<td>10 μA</td>
<td>70 ppm / °C</td>
</tr>
</tbody>
</table>

5. **OVERRANGE RATINGS, PROTECTION & INDICATION**: 9 to 28 VDC power circuit is not isolated from the signal circuit.
 Input Overrange Indicator: “OLOL”.
 Input Underrange Indicator: “OULU”.
 Display Overrange/Underrange Indication: “.....”/“.....”

6. **DISPLAY RESPONSE TIME**: 500 msec min.

7. **NORMAL MODE REJECTION**: 60 dB 50/60 Hz

8. **USER INPUT (USR)**: Programmable input. Connect terminal to common (USR COMM) to activate function. Internal 10KΩ pull-up resistor to +9 to 28 VDC.
 Threshold Levels: VIH = 1.0 V max; VIL = 2.4 V min; VMAX = 28 VDC
 Response Time: 5 msec typ.; 50 msec debounce (activation and release)

9. **MEMORY**: Nonvolatile E²PROM memory retains all programming parameters and max/min values when power is removed.

10. **ENVIRONMENTAL CONDITIONS**:

 Operating Temperature Range for DP63000A-I: -35 to 75°C
 Operating Temperature Range for DP63000B-I depends on display color and intensity level as per below:

INTENSITY LEVEL	TEMPERATURE
T & 2	-35 to 75°C
3	-35 to 70°C
4	-35 to 60°C
5	-35 to 50°C

 Storage Temperature: -35 to 85°C
 Operating and Storage Humidity: 0 to 85% max. relative humidity (non-condensing)

11. **CONNECTIONS**: Wire clamping screw terminals
 Wire Strip Length: 0.3” (7.5 mm)
 Wire Gage: 30-14 AWG copper wire

12. **TORQUE**: 5 inch-lbs (0.565 N-m) max.

13. **VIBRATION**:

 According to IEC 68-2-6: 5 to 500 Hz, in X, Y, Z direction for 1.5 hours, 5 g’s.

 Shock According to IEC 68-2-27: Operational 30 g, 11 msec in 3 directions

 Altitude: Up to 2000 meters

14. **CERTIFICATIONS AND COMPLIANCES**:

 SAFETY
 - UL Recognized Component, File #E313607, UL61010A-1, CSA22.2 No. 61010-1
 - Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
 - UL Listed, File # E313547, UL508, CSA C22.2 No. 14-M95
 - IP65 Enclosure rating (Face only), IEC 529
 - Type 4X Indoor Enclosure rating (Face only), UL50
 - ELECTROMAGNETIC COMPATIBILITY
 - Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.
 - Immunity to Industrial Locations:
 - Electromagnetic RF fields
 - EN 61000-4-3: Criterion A
 - 4 kV contact discharge
 - 8 kV air discharge
 - Fast transients (burst)
 - EN 61000-4-4: Criterion A
 - 10 V/m
 - Surge
 - EN 61000-4-5: Criterion A
 - 2 kV L-N, 1 kV signal
 - RF conducted interference
 - EN 61000-4-6: Criterion A
 - 2 kV L-N-E power
 - 3 V/m
 - Power frequency magnetic fields
 - EN 61000-4-8: Criterion A
 - 30 A/m
 - Emissions
 - EN 55011: Class A
 - Notes:

 WEIGHT
 - 3.2 oz (100 g)

PART NUMBER INFORMATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Meter with reflective display</td>
<td>DP63000A-I</td>
</tr>
<tr>
<td>DC Current Meter with backlight display</td>
<td>DP63000B-I</td>
</tr>
<tr>
<td>Single Relay Output Card</td>
<td>DP6-RLY0</td>
</tr>
<tr>
<td>Dual Sinking Open Collector Output card</td>
<td>DP6-SNK0</td>
</tr>
<tr>
<td>RS485 Serial Communications Card</td>
<td>DP6-COM1</td>
</tr>
<tr>
<td>RS232 Serial Communications Card</td>
<td>DP6-COM2</td>
</tr>
<tr>
<td>Micro-Line Power Supply, 85 to 250 VAC</td>
<td>DP6-MLPS1</td>
</tr>
<tr>
<td>RS232 Programming Cable (DB9-RJ11)</td>
<td>DP6-232-CABLE</td>
</tr>
<tr>
<td>RS485 Programming Cable (DB9-RJ11)</td>
<td>DP6-485-CABLE</td>
</tr>
<tr>
<td>PC Configuration Software for Windows 98, ME, 2000, XP</td>
<td>DP6-SOFT</td>
</tr>
</tbody>
</table>
ADDING OPTION CARDS

The DP63000 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.

WARNING: Disconnect all power to the unit before installing Plug-in card.

Note: Measurement errors may occur if signal input common is shared with another circuit common (ie, serial common, Dual Sinking Output option card, or Power Supply common) on multiple units.

SINGLE RELAY CARD
Type: Single FORM-C relay
Isolation To Sensor & User Input Commons: 1400 Vrms for 1 min.
Working Voltage: 150 Vrms
Contact Rating: 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive
Life Expectancy: 100,000 minimum operations
Response Time:
 Turn On Time: 4 msec max.
 Turn Off Time: 4 msec max.

DUAL SINKING OUTPUT CARD
Type: Non-isolated switched DC, N Channel open drain MOSFET
Current Rating: 100 mA max.
$V_{DS\,ON}$: 0.7 V @ 100 mA
$V_{DS\,MAX}$: 30 VDC
Offstate Leakage Current: 0.5 mA max.

RS485 SERIAL COMMUNICATIONS CARD
Type: RS485 multi-point balanced interface (non-isolated)
Baud Rate: 300 to 38.4k
Data Format: 7/8 bits; odd, even, or no parity
Bus Address: 0 to 99; max 32 meters per line
Transmit Delay: Selectable (refer to DP6-COM bulletin)

RS232 SERIAL COMMUNICATIONS CARD
Type: RS232 half duplex (non-isolated)
Baud Rate: 300 to 38.4k
Data Format: 7/8 bits; odd, even, or no parity

1.0 INSTALLING THE METER

INSTALLATION
The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not over-tighten the screws.

INSTALLATION ENVIRONMENT
The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

2.0 SETTING THE JUMPERS

INPUT RANGE JUMPER
This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum signal input to avoid overloads. To access the jumper, remove the rear cover of the meter.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

REMOVING THE REAR COVER
To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.
3.0 Installing Plug-In Cards

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter.

4.0 Wiring the Meter

Wiring Overview

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter’s voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

Strip the wire, leaving approximately 0.3” (7.5 mm) bare lead exposed (stranded wires should be tinned with solder.) Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm).

EMC Installation Guidelines

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation.

listed below are some EMC guidelines for successful installation in an industrial environment.

1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).
 b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
 c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.
3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long
4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:
 a. Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251
 b. TD K # ZCAT3035-1330A
 c. Steward # 28B2029-0A0
 d. Line Filters for input power cables:
 - Schaffner # FN610-1/07
 - Schaffner # FN670-1.8/07
 e. Corcom # 1 VR3
 f. Note: Reference manufacturer’s instructions when installing a line filter.
6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
7. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

4.1 Power Wiring

DC Power
+9 to +28 VDC: +VDC
Power Common: -VDC

CAUTION: 9 to 28 VDC power circuit is not isolated from the signal circuit.

4.2 User Input Wiring

Sinking Logic

USR COMM \[Connect external switching device between the USR User Input terminal and User Input Common. \]

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).
4.3 INPUT WIRING

CAUTION: Power input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the power input common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth ground; and the common of the plug-in cards with respect to input common.

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

4.4 SETPOINT (OUTPUT) WIRING

4.5 SERIAL COMMUNICATION WIRING
5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the SEL button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The RST button is used to select the desired module. The displayed module is entered by pressing the SEL button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The SEL button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro NO. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/values for that parameter. The RST button is used to move through the selections/values for that parameter. Pressing the SEL button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the RST button to access the value. The right hand most digit will begin to flash. Pressing the RST button again increments the digit by one or the user can hold the RST button and the digit will automatically scroll. The SEL button will advance to the next digit. Pressing and holding the SEL button will enter the value and move to the next parameter.

OPERATING MODE DISPLAY DESIGNATORS

MAX - Maximum display capture value
MIN - Minimum display capture value

“1” - To the right of the display indicates setpoint 1 output activated.
“2” - To the right of the display indicates setpoint 2 output activated.

Pressing the SEL button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.

6.0 PROGRAMMING THE METER

OVERVIEW

PROGRAMMING MENU

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the SEL button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The RST button is used to select the desired module. The displayed module is entered by pressing the SEL button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The SEL button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro NO. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/values for that parameter. The RST button is used to move through the selections/values for that parameter. Pressing the SEL button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the RST button to access the value. The right hand most digit will begin to flash. Pressing the RST button again increments the digit by one or the user can hold the RST button and the digit will automatically scroll. The SEL button will advance to the next digit. Pressing and holding the SEL button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the SEL button with Pro NO displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter’s Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.
6.1 MODULE 1 - SIGNAL INPUT PARAMETERS (1-IMP)

PARAMETER MENU

INPUT RANGE

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

DISPLAY DECIMAL POINT

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the \(dSP \) 1 and \(dSP \) 2 parameters and setpoint values.

DISPLAY OFFSET VALUE

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset.

FILTER SETTING

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

FILTER BAND

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Position point. A band setting of ‘0’ keeps the filter permanently engaged at the filter level selected above.

SCALING STYLE

If Input Values and corresponding Display Values are known, the Key-in (K) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (A) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

For Key-in (K) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (A) style, the meter shows the previously stored Input Value.

To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears.

Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 1

Enter the first Display Value by using the front panel buttons. This is the same for K and A scaling styles. The decimal point follows the \(dECP \) selection.

INPUT VALUE FOR SCALING POINT 2

For Key-in (K) style, enter the known second Input Value using the front panel buttons.

For Apply (A) style, the meter shows the previously stored Input Value for Scaling Point 2.

To retain this value, press the SEL button to advance to the next parameter.

To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears.

Press the SEL button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

Enter the second Display Value by using the front panel buttons. This is the same for K and A scaling styles.

General Notes on Scaling

1. When using the Apply (A) scaling style, input values for scaling points must be confined to the range limits shown.

2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA cannot equal 0 and 20.)

3. For input levels beyond the programmed Input Values, the meter extends the Display Value by calculating the slope from the two coordinate pairs (\(\text{IMP} \), \(\text{dSP} \)).
6.2 MODULE 2 - SECONDARY FUNCTION PARAMETERS (2-SEC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-En</td>
<td>Enables the Maximum Display Capture capability.</td>
</tr>
<tr>
<td>HI-</td>
<td>Max Capture Enable</td>
</tr>
<tr>
<td>LO-En</td>
<td>Min Capture Enable</td>
</tr>
<tr>
<td>LO-</td>
<td>Max Capture Delay Time</td>
</tr>
<tr>
<td>LO-</td>
<td>Min Capture Delay Time</td>
</tr>
<tr>
<td>FCS</td>
<td>Factory Service Operations</td>
</tr>
<tr>
<td>CodE</td>
<td>Access Code For Service Operations</td>
</tr>
</tbody>
</table>

MAX DISPLAY ENABLE

No: YES

Enables the Maximum Display Capture capability.

MAX CAPTURE DELAY TIME

0.0 to 9999 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN DISPLAY ENABLE

No: YES

Enables the Minimum Display Capture capability.

MIN CAPTURE DELAY TIME

0.0 to 9999 sec.

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

No: YES

Select YES to perform either of the Factory Service Operations shown below.

DISPLAY MODE

- P-En: Print Request
- P-Lo: Print and Reset
- rSt-1: Setpoint 1 Reset
- rSt-2: Setpoint 2 Reset
- rSt-12: Setpoint 1 and 2 Reset

DESCRIPTION

- Serial transmit of the active parameters selected in the Print Options menu (Module 5).
- Same as Print Request followed by a momentary reset of the assigned value(s).
- Resets setpoint 1 output.
- Resets setpoint 2 output.
- Reset both setpoint 1 and 2 outputs.

USER INPUT ASSIGNMENT

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

RESTORE FACTORY DEFAULT SETTINGS

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display CodE 66. Press the SEL button to exit the module.

VIEW VERSION DISPLAY

Entering Code 50 will display the version (x.x) of the meter. The display returns to CodE 50. Press the SEL button to exit the module.

CALIBRATION

The unit uses stored current calibration values to provide accurate current measurements. Over time, the electrical characteristics of the components inside the unit will slowly change with the result that the stored calibration values no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the unit involves a current calibration which should only be performed by individuals experienced in calibrating electronic equipment. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the unit.

Current Calibration

1. Connect the negative lead of a precision DC current source with an accuracy of 0.01% or better to the COMM terminal. Leave the positive lead of the DC current source unconnected.
2. With the display at CodE 48, press and hold the SEL button for 2 seconds. The display will change to 0.0A.
3. Press the RST button to select the range to be calibrated.
4. Press the SEL button. Display reads 0.0A.
5. With the positive lead of the DC current source unconnected, press SEL. Display reads 0.0A for about 8 seconds.
6. When the display reads the selected range, connect the positive lead of the DC current source to the INP+ and apply full-scale input signal for the range. (Note: For 200 mA range, apply 100 mA as indicated on the display.)
7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads 0.0A, press the SEL button to exit calibration.
The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the CodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the CodE prompt appears (see chart).

6.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-dSP)

DISPLAY UPDATE TIME

![dSP·t](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

This parameter sets the display update time in seconds.

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

![SEL](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

The YES selection allows the SEL button to toggle through the enabled displays.

FRONT PANEL RESET ENABLE (RST)

![rSt](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>NO</th>
<th>LO</th>
<th>dSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>HI-LD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This selection allows the RST button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

![2r0](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

This parameter enables the RST button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

![Scrol](image)

<table>
<thead>
<tr>
<th>Selection</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

The YES selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

UNITS INDICATOR SELECTION

![UN.I$	ext{S}](image)

| Selection | OFF | L | 15 | SEGS |

This parameter activates the Units Indicator on the display. There are two methods of selecting the Indicator. List will present a group of Units preprogrammed into the meter. Segments allows the user to choose which of the segments should light.

DISPLAY COLOR (BACKLIGHT UNIT ONLY)

![COLOR](image)

| Selection | rEd | Brn |

Enter the desired display color, red or green. This parameter is active for backlight units only.

DISPLAY INTENSITY LEVEL (BACKLIGHT UNIT ONLY)

![d·LEU](image)

| Selection | 1 to 5 |

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

PROGRAMMING SECURITY CODE

![CodE](image)

| Selection | 000 to 999 |

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the CodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the CodE prompt appears (see chart).

<p>| USER INPUT | USER INPUT | SECURITY | MODE WHEN “SEL” | FULL PROGRAMMING |</p>
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>STATE</th>
<th>CODE</th>
<th>BUTTON IS PRESSED</th>
<th>MODE ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Loc</td>
<td>0</td>
<td>0</td>
<td>Full Programming</td>
<td>Immediate Access</td>
</tr>
<tr>
<td>1-99</td>
<td>Quick Programming</td>
<td>After Quick Programming with correct code entry at CodE prompt *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-999</td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>0</td>
<td>0</td>
<td>Programming Lock</td>
<td>No Access</td>
</tr>
<tr>
<td>1-99</td>
<td>Quick Programming</td>
<td>No Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-999</td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Active</td>
<td>0-999</td>
<td>Full Programming</td>
<td>Immediate Access</td>
<td></td>
</tr>
</tbody>
</table>

* Entering Code 222 allows access regardless of security code.
6.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4·SPt)

PARAMETER MENU

The Setpoint Output Parameters are only active when an optional output module is installed in the meter.

SETPOINT SELECT

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to SPSEL. Repeat steps for each setpoint to be programmed. Select NO to exit the module. The number of setpoints available is setpoint output card dependent.

SETPOINT 2 ENABLE

Select YES to enable Setpoint 2 and access the setup parameters. If NO is selected, the unit returns to SPSEL and setpoint 2 is disabled.

SETPOINT ACTION

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-bl</td>
<td>High Acting, with balanced hysteresis</td>
</tr>
<tr>
<td>LO-bl</td>
<td>Low Acting, with balanced hysteresis</td>
</tr>
<tr>
<td>HI-ub</td>
<td>High Acting, with unbalanced hysteresis</td>
</tr>
<tr>
<td>LO-ub</td>
<td>Low Acting, with unbalanced hysteresis</td>
</tr>
</tbody>
</table>

SETPOINT VALUE

Enter the desired setpoint value. The decimal point position for the setpoint and hysteresis values follow the selection set in Module 1.

HYSTERESIS VALUE

Enter desired hysteresis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Enter the reset action of the output. See figure for details.

Auto = Automatic action; This action allows the output to automatically reset off at the trigger point. The “on” output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.

Latch = Latch with immediate reset action; This action latches the output on at the trigger point and remains on until the trigger point is crossed again.

Auto

Latch

button or user input manual reset, serial reset command or meter power cycle. When the user input or RST button is activated (momentary action), the corresponding “on” output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

L- dLY = Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, serial reset command or meter power cycle. When the user input or RST button is activated (momentary action), the meter delays the event until the corresponding “on” output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous L- dLY reset if it is not activated at power up.)

![Setpoint Output Reset Actions](image)

OUTPUT RESET WITH DISPLAY RESET

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

This parameter enables the RST button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the output will not reset.

STANDBY OPERATION

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

When YES, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

CHANGE DISPLAY COLOR w/OUTPUT STATE

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

This parameter enables the backlight DP63000B-I to switch the backlight color when the output state changes. This parameter is only active for the backlight version.

6.5 MODULE 5 - SERIAL SETUP PARAMETERS (5-SER)

The Serial Setup Parameters are only active when the optional RS232 or RS485 serial communications module is installed in the meter. Refer to the DP6-COM bulletin for complete details on DP63000 serial communications.
Press and hold SEL button to enter Programming Mode.
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence. The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 2006 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.
Where Do I Find Everything I Need for Process Measurement and Control?
OMEGA...Of Course!

Shop online at omega.com

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gages
- Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments