Data Acquisition Systems

8-Channel Voltage Input High Speed USB Data Acquisition Modules

OM-USB-1608G Series

- 16-Bit High-Speed USB Devices
- Acquisition Rates Ranging From 250 kS/s to 500 kS/s
- 8 Differential (DIFF) or 16 Single-Ended (SE) Analog Inputs (Software Selectable)
- Up to 2 Analog Outputs
- 8 Digital I/O Lines
- Two 32-Bit Counter Input Channels
- One Timer Output Channel
- TracerDAQ® Software Included for Acquiring and Displaying Data and Generating Signals
- Comprehensive Drivers for DASYLab® and NI LabVIEW®
- InstaCal™ Software Utility for Installing, Calibrating, and Testing
- Supported Operating Systems: Windows® VISTA/7/8/10 (32-bit and 64-bit)

The OM-USB-1608G Series devices are low-cost, high-speed, analog and digital I/O USB devices. All of these devices offer up to eight differential (DIFF) or 16 single-ended (SE) analog inputs, up to eight digital I/O channels, two counter inputs, and one timer output.

The OM-USB-1608GX-2AO offers two, 16-bit analog output channels with DAC rates up to 500 kS/s. Everything you need to begin acquiring, viewing, and storing data is included with each OM-USB-1608G Series device, including comprehensive software support.

Analog Input

OM-USB-1608G Series devices provide 16-bit analog inputs that are software-selectable as 16 SE or eight DIFF inputs. These devices also support input ranges of ±10V, ±5V, ±2V, and ±1V that are software-selectable per channel.

Analog Output

(OM-USB-1608GX-2AO only)

The OM-USB-1608GX-2AO has two 16-bit analog outputs. Both outputs can be updated at a rate of 250 kS/s per channel; one output can be updated at a rate of 500 kS/s. The output range is fixed at ±10V. The outputs default to 0V when the host PC is shut down or suspended, or when a reset command is issued to the device.

Digital I/O

Eight bidirectional digital I/O connections are included with OM-USB-1608G Series devices. Each digital channel is individually configurable for input or output. The digital I/O terminals can detect the state of any TTL-level input. You can configure for pull-up (+5V) or pull-down (0V) through a jumper.

Counter Input

Each OM-USB-1608G Series device includes two 32-bit event counters for counting TTL pulses. The counters accept frequency inputs of up to 20 MHz.

Timer Output

OM-USB-1608G Series devices have a PWM timer output that can generate a pulse output with a programmable frequency in the range of 0.0149 Hz to 32 MHz. The timer output parameters are software-selectable.

External Clock I/O

OM-USB-1608G Series devices provide one external clock input and one external clock output for the analog inputs. The OM-USB-1608GX-2AO also has one external clock input and one external clock output for the analog outputs.

Analog Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Analog Inputs</th>
<th>Sampling Rate</th>
<th>Analog Outputs</th>
<th>Digital I/O</th>
<th>Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM-USB-1608G</td>
<td>16 SE/8 DIFF</td>
<td>Up to 250 kS/s</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>OM-USB-1608GX</td>
<td>16 SE/8 DIFF</td>
<td>Up to 500 kS/s</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>OM-USB-1608GX-2AO</td>
<td>16 SE/8 DIFF</td>
<td>Up to 500 kS/s</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Software
The OM-USB-1608G modules ship with an impressive array of software, including TracerDAQ®, a full-featured, out-of-the-box data logging, viewing, and analysis application. Driver support and detailed example programs are included for Universal Library programming libraries for Microsoft® Visual Studio® programming languages, and other languages, including DASYLab®, and ULx for NI LabVIEW® (comprehensive library of VIs and example programs compatible with 32-bit and 64-bit LabVIEW 2010 or later) and InstaCal™ installation, calibration and test utility-powerful solutions for programmers and nonprogrammers alike. These modules operate under Microsoft Windows® VISTA/7/8/10 (32-bit and 64-bit) operating systems.

The OM-USB-1608G data acquisition module is supplied with TracerDAQ software which is a collection of four virtual instrument applications used to graphically display and store input data and generate output signals:

- **Strip Chart**—Log and graph values acquired from analog inputs, digital inputs, temperature inputs and counter inputs
- **Oscilloscope**—Display values acquired from analog inputs
- **Function Generator**—Generate waveforms for analog outputs
- **Rate Generator**—Generate waveforms for counter outputs

TracerDAQ PRO is an enhanced version of TracerDAQ and is available as a purchased upgrade (SWD-TRACERDAQ-PRO). A comparison of some of the features included in TracerDAQ vs TracerDAQ PRO is shown below.

Features Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>TracerDAQ</th>
<th>TracerDAQ Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip Chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Types</td>
<td>Analog input, temperature input, digital input, event counter</td>
<td>Analog input, temperature input, digital input, event counter</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Maximum Samples per Channel</td>
<td>32,000</td>
<td>1 million</td>
</tr>
<tr>
<td>Alarm Conditions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Measurements Window</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Enter Annotations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Software Triggering</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hardware Triggering</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time-of-Day Triggering</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Linear Scaling</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Oscilloscope

<table>
<thead>
<tr>
<th>Feature</th>
<th>TracerDAQ</th>
<th>TracerDAQ Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Type</td>
<td>Analog input</td>
<td>Analog input</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Measurements Window</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Reference Channel</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Math Channel</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Rate Generator

<table>
<thead>
<tr>
<th>Feature</th>
<th>TracerDAQ</th>
<th>TracerDAQ Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Type</td>
<td>Counter output</td>
<td>Counter output</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Function Generator

<table>
<thead>
<tr>
<th>Feature</th>
<th>TracerDAQ</th>
<th>TracerDAQ Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Type</td>
<td>Analog output</td>
<td>Analog output</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Waveform Types</td>
<td>Sine</td>
<td>Sine, square, triangle, flat, pulse, ramp, random, arbitrary</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Gate Ratio</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Rate Multiplier</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sweep (Linear and Exponential)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Specifications

ANALOG INPUT

A/D Converter Type: Successive approximation

ADC Resolution: 16-bits

Number of Channels: 8 DIFF, 16 SE; software-selectable

Input Voltage Range: ±10V, ±5V, ±2V, ±1V; software-selectable per channel

Absolute Maximum Input Voltage
- CHx Relative to AGND: ±25V maximum (power on); ±15V maximum (power off)

Input Impedance: 1 GΩ (power on); 820 Ω (power off)

Input Bias Current: ±10 nA

Input Bandwidth
- All Input Ranges, Small Signal (-3 dB)
 - OM-USB-1608G: 750 kHz
 - OM-USB-1608GX and OM-USB-1608GX-2AO: 870 kHz

Input Capacitance: 60 pf

Maximum Working Voltage (Signal + Common Mode): ±10.2 V maximum relative to AGND

Common Mode Rejection Ratio
- fIN = 60 Hz, All Input Ranges: 86 dB

Crosstalk
- Adjacent Differential Mode Channels, DC to 100 kHz: -75 dB

Input Coupling: DC

Sampling Rate (Software-Selectable)
- OM-USB-1608G: 0.0149 Hz to 250 kHz
- OM-USB-1608GX and OM-USB-1608GX-2AO: 0.0149 Hz to 500 kHz

Warm-up Time: 15 minutes minimum

Analog Output Absolute Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Absolute Accuracy (±LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10V</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Analog Output Relative Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Relative Accuracy (INL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10V</td>
<td>4.0 typical</td>
</tr>
</tbody>
</table>

Trigger Source: TRIG (refer to External Trigger section)

Sample Clock Source: Internal A/D clock or external A/D clock (AICKI terminal)

Burst Mode: Software-selectable using the internal A/D clock; always enabled when using the external clock (AICKI terminal)

OM-USB-1608G: 4 μs

OM-USB-1608GX and OM-USB-1608GX-2AO: 2 μs

Throughput
- Software Paced: 33 to 4000 S/s typical, system-dependent

Hardware Paced
- OM-USB-1608G: 250 kS/s maximum
- OM-USB-1608GX and OM-USB-1608GX-2AO: 500 kS/s maximum

Channel Gain Queue: Up to 16 elements; software-selectable range for each channel

Warm-up Time: 15 minutes minimum

Analog Output Absolute Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Absolute Accuracy (±LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10V</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Analog Output Relative Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Relative Accuracy (INL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10V</td>
<td>4.0 typical</td>
</tr>
</tbody>
</table>

Power Off
- Duration: 10 ms
- Amplitude: 7V peak

Differential Non-Linearity: ±0.25 LSB typ; ±1 LSB maximum

Output Current
- AOUTx: ±3.5 mA maximum

Output Short-Circuit Protection
- AOUTx Connected to AGND: Unlimited duration

Output Coupling: DC

Power On and Reset State
- DACs Cleared to Zero-Scale: 0V, ±50 mV (AOUTx defaults to 0V whenever the host computer is reset, powered on, suspended, or a reset command is issued to the device)

Output Noise: 30 μVrms

Sample Clock Source: Internal D/A clock or external D/A clock (AOCKI terminal)

Output Update Rate: 500 kHz/number of channels in scan

Settling Time
- To Rated Accuracy, 10V Step: 40 μs
- slew Rate: 9 V/μs

Throughput
- Software Paced: 33 S/s to 4000 S/s typical, system-dependent
- Hardware Paced: 500 kS/s maximum, system-dependent

Analog Input DC Voltage Measurement—All Values are (±)

<table>
<thead>
<tr>
<th>Range</th>
<th>Gain Error (% of Reading)</th>
<th>Offset Error (μV)</th>
<th>INL Error (% of Range)</th>
<th>Absolute Accuracy at Full Scale (μV)</th>
<th>Temperature Coefficient (°C)</th>
<th>Offset Temp Coefficient (μV/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10V</td>
<td>0.024</td>
<td>915</td>
<td>0.0076</td>
<td>4075</td>
<td>0.0014</td>
<td>47</td>
</tr>
<tr>
<td>±5V</td>
<td>0.024</td>
<td>686</td>
<td>0.0076</td>
<td>2266</td>
<td>0.0014</td>
<td>24</td>
</tr>
<tr>
<td>±2V</td>
<td>0.024</td>
<td>336</td>
<td>0.0076</td>
<td>968</td>
<td>0.0014</td>
<td>10</td>
</tr>
<tr>
<td>±1V</td>
<td>0.024</td>
<td>245</td>
<td>0.0076</td>
<td>561</td>
<td>0.0014</td>
<td>5</td>
</tr>
</tbody>
</table>

For the peak-to-peak noise distribution test, a differential input channel is connected to AGND at the input terminal block, and 32,000 samples are acquired at the maximum rate available at each setting.
ANALOG INPUT/OUTPUT CALIBRATION

Recommended Warm-Up Time:
15 minutes minimum

Calibration Method:
Self-calibration (firmware)

Calibration Interval: 1 year
(factory calibration)

AI Calibration Reference
5V, ±2.5 mV maximum (actual measured values stored in EEPROM)

Tempco: 5 ppm/°C maximum
Long Term Stability: 15 ppm/1000 hours

AOUTx Calibration Procedure
(OM-USB-1608GX-2AO)
The analog output terminals are internally routed to the analog input circuit. For best calibration results, disconnect any AOUTx connections at the terminal block prior to performing AOUT calibration.

DIGITAL INPUT/OUTPUT

Digital Type: CMOS

Number of I/O: 8

Configuration: Each bit may be configured as input (power on default) or output

Pull-Up Configuration: The port has 47 kΩ resistors configurable as pull-ups or pull-downs (default) via internal jumper (W1)

Digital I/O Transfer Rate (System-Paced): 33 to 8000 port reads/writes or single bit reads/writes per second typ, system dependent

Input High Voltage: 2.0V minimum, 5.5V absolute maximum

Input Low Voltage: 0.8V maximum, -0.5V absolute minimum, 0V recommended minimum

Output High Voltage: 4.4V minimum (IOH = -50 µA), 3.76V minimum (IOH = -2.5 mA)

Output Low Voltage: 0.1V maximum (IOL = 50 µA), 0.44V maximum (IOL = 2.5 mA)

Output Current: ±2.5 mA maximum

EXTERNAL TRIGGER

Trigger Source: TRIG input

Trigger Mode: Software configurable for edge or level sensitive, rising or falling edge, high or low level. Power on default is edge sensitive, rising edge.

Trigger Latency: 1 µs + 1 clock cycle maximum

Trigger Pulse Width: 100 ns minimum

Input Type: Schmitt trigger, 33 Ω series resistor and 49.9 kΩ pull-down to ground

Schmitt Trigger Hysteresis: 0.4V to 1.2V

Input High Voltage: 2.2V minimum, 5.5V absolute maximum

Input Low Voltage: 1.5V maximum, -0.5V absolute minimum, 0V recommended minimum

EXTERNAL CLOCK INPUT/OUTPUT

Terminal Names:
- CTR0
- CTR1

Number of Channels: 2 channels

Resolution: 32-bit

Counter Type: Event counter

Input Type: Schmitt trigger, 33 Ω series resistor, 47 kΩ pull-down to ground

Schmitt Trigger Hysteresis: 0.4V to 1.2V

Input High Voltage: 2.2V minimum, 5.5V absolute maximum

Input Low Voltage: 1.5V maximum, -0.5V absolute minimum, 0V recommended minimum

Output High Voltage: 4.4V minimum (IOH = -50 µA), 3.76V minimum (IOH = -2.5 mA)

Output Low Voltage: 0.1V maximum (IOL = 50 µA), 0.44V maximum (IOL = 2.5 mA)

Output Current: ±2.5 mA maximum

COUNTER

Terminal Names: CTR0, CTR1

Number of Channels: 2 channels

Resolution: 32-bit

Counter Type: Event counter

Input Type: Schmitt trigger, 33 Ω series resistor, 47 kΩ pull-down to ground

Input Source:
- CTR0 (terminal 52)
- CTR1 (terminal 51)

Counter Read/Writes Rates (Software-Paced): 33 to 8000 reads/writes per second typical, system dependent
Input High Voltage: 2.2V minimum, 5.5V maximum
Input Low Voltage: 1.5V maximum, -0.5V minimum
Schmitt Trigger Hysteresis: 0.4V minimum, 1.2V maximum
Input Frequency: 20 MHz, maximum
High Pulse Width: 25 ns, minimum
Low Pulse Width: 25 ns, minimum

TIMER OUTPUT
Timer Terminal Name: TMR
Timer Type: PWM output with count, period, delay, and pulse width registers
Output Value: Default state is idle low with pulses high, software-selectable output invert
Internal Clock Frequency: 64 MHz
Register Widths: 32-bit
High Pulse Width: 15.625 ns minimum
Low Pulse Width: 15.625 ns minimum

Output High Voltage: 4.4V minimum (IOH = -50 μA), 3.76V minimum (IOH = -2.5 mA)
Output Low Voltage: 0.1V maximum (IOL = 50 μA), 0.44V maximum (IOL = 2.5 mA)
Output Current: ±2.5 mA maximum

MEMORY
Data FIFO: 4 kS analog input/2 kS analog output
Non-Volatile Memory: 32 KB (28 KB firmware storage, 4 KB calibration/user data)

POWER
Supply Current
This is the total quiescent current requirement for the device that includes up to 10 mA for the Status LED. This does not include any potential loading of the digital I/O bits, +5V terminal, or the AOUTx outputs (OM-USB-1608GX-2AO only)
Quiescent Current
OM-USB-1608G
OM-USB-1608GX
OM-USB-1608GX-2AO: 260 mA
+5V User Output Voltage Range
Available at Terminal 42:
4.9V minimum to 5.1V maximum
+5V User Output Current
Available at Terminal 42:
10 mA maximum

ENVIRONMENTAL
Operating Temperature Range: 0 to 55°C (32 to 131°F) maximum
Storage Temperature Range: -40 to 85°C (-40 to 185°F) maximum
Humidity: 0 to 90% RH non-condensing max

MECHANICAL
Dimensions:
127 L × 89.9 W × 35.6 H mm
(5.00 × 3.53 × 1.40")
Weight: 160 g (0.35 lb)
USB Cable: 3 m (9.84") maximum

Extended Warranty Program
OMEGACARE® extended warranty program is available for models shown on this page. Ask your sales representative for full details when placing an order. OMEGACARE® covers parts, labor and equivalent loaners.

To Order

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM-USB-1608G</td>
<td>16-channel, 250 kS/s USB data acquisition module with two 32-bit counter inputs, one timer output and eight DIO lines</td>
</tr>
<tr>
<td>OM-USB-1608GX</td>
<td>16-channel, 500 kS/s USB data acquisition module with two 32-bit counter inputs, one timer output and eight DIO lines</td>
</tr>
<tr>
<td>OM-USB-1608GX-2AO</td>
<td>16-channel, 500 kS/s USB data acquisition module with two analog outputs, two 32-bit counter inputs, one timer output and eight DIO lines</td>
</tr>
<tr>
<td>SWD-TRACERDAQ-PRO</td>
<td>TracerDAQ Pro software</td>
</tr>
</tbody>
</table>

Comes complete with a 1.8 m (6’) USB cable, software and operator’s manual on CD.
Ordering Example: OM-USB-1608G, 16-channel, 250 kS/s USB data acquisition module with two 32-bit counter inputs, one timer output and eight DIO lines, and OCW-1, 1-year extended warranty adds 1 year to standard 1-year warranty.