CN3440 SERIES
Universal Temperature & Process Controllers
Installation Guide
WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **37 months** from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal **three (3) year product warranty** to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED.

LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS / INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 1998 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.
CONTENTS

1 INTRODUCTION 2

2 PREPARATION 3
 2.1 Checking the Code Number 3

3 MECHANICAL INSTALLATION 4
 3.1 Siting .. 4
 3.2 Mounting 5

4 ELECTRICAL INSTALLATION 6
 4.1 Access to Terminals 6
 4.2 Setting the Input Selector Links ... 6
 4.3 Setting the Isolated Output Link ... 6
 4.4 Cable Glands and
 Conduit Fixings 8
 4.4.1 Cable Glands
 (IEC – 20mm) 8
 4.4.2 Conduit Adaptors
 (N. American – 0.5in) 8
 4.4.3 Cable Glands
 (N. American – 0.5in) 9
 4.5 Connections Summary 10
 4.6 Input Connections 12
 4.6.1 Thermocouple
 (THC) Inputs 12
 4.6.2 3-lead Resistance
 Thermometer (RTD)
 Inputs 12
 4.6.3 2-lead Resistance
 Thermometer (RTD)
 Inputs 12
 4.6.4 Links for Unused Inputs .. 12
 4.7 Output Connections 14
 4.8 Relay Connections 14
 4.9 Motorized Valve Connections 14
 4.10 Logic Input Connections 15
 4.11 Power Supply Selection and
 AC Connections 16

5 INSTALLATION RECORD 17
The instrument documentation is shown in Fig. 1.1. The **Standard Manuals**, including the specification sheet, are supplied with all instruments. The **Modbus Supplement** is supplied with instruments configured for Modbus Serial Communication.

This manual includes an **Installation Record** which should be completed as a log of the electrical installation. The record is useful when carrying out initial instrument programming and can be retained for future reference.
2 PREPARATION

2.1 Checking the Code Number – Fig. 2.1

Fig. 2.1 Location of Code Number Label
EC Directive 89/336/EEC

In order to meet the requirements of the EC Directive 89/336/EEC for EMC regulations, this product must not be used in a non-industrial environment.

3.1 Siting – Figs. 3.1 and 3.2

A – Close to Sensor

B – At Eye-level Location

C – Avoid Vibration

D – Use Screened Cables

Caution. Select a location away from strong electrical and magnetic fields. If these cannot be avoided, particularly in applications where ‘walkie talkies’ are used, connect using screened cables within earthed metal conduit.

A – Within Temperature Limits

B – Within Humidity Limits

IP66/NEMA4X

C – Within Protection Rating Limits

Fig. 3.1 General Requirements

Fig. 3.2 Environmental Requirements
3.2 Mounting – Figs. 3.3 and 3.4

The instrument is designed for wall-/pipe-mounting – see Fig. 3.4. Overall dimensions are shown in Fig. 3.3.

![Fig. 3.3 Overall Dimensions](image)

Fig. 3.3 Overall Dimensions

![Fig. 3.4 Wall-/Pipe-mounting Details](image)

Fig. 3.4 Wall-/Pipe-mounting Details
Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

Note.
- Always route signal leads and power cables separately, preferably in earthed metal conduit.
- It is strongly recommended that screened cable is used for signal inputs and relay connections. Connect the screen to the ground stud.

Information. Use cable appropriate for the load currents. The terminals accept cables up 12AWG (2.5mm²).

4.1 **Access to Terminals – Fig. 4.1**
For access to terminals – refer to Fig. 4.1, steps 1 to 6.

4.2 **Setting the Input Selector Links – Fig. 4.2A**
Plug-in links on the microprocessor p.c.b. are positioned according to the type of Process Variable Input, Remote Set Point Input and Valve Position Feedback Inputs used.

Remove the instrument front panel – see Fig. 4.1, steps 1 to 6.

Referring to Fig. 4.2A, set the link positions for the input type required.

4.3 **Setting the Isolated Output Link – Fig. 4.2B**
A plug-in link (PL7) on the microprocessor p.c.b. is positioned according to the isolated output required, either a current proportioning control output (programmable in range 0 to 20mA) or a 12V logic output (minimum load 400Ω). Referring to Fig. 4.2B – steps 1 and 2, set the link for the output type required.

To use a 12V logic output, the control type must be set to Time Proportioning Control – see Fig. 3.1 of the Programming Guide.

Fig. 4.1 Access to Terminals and Processor Board
A – Input Types

B – Isolated Output Types

1. Identify Link PL7
2. Set links for output type required

Fig. 4.2 Setting the Selector Links
4.4 Cable and Conduit Fixings

4.4.1 Cable (IEC – 20mm) – Fig. 4.3

Warning.
- Rigid conduit must NOT be fitted to the controller.
- Controller adaptors must incorporate a face seal.
- Torque settings for the hubs and outer nuts on the specified adaptors is 20ft. lbs minimum, 25ft. lbs. maximum.

Information.
- Suitable adaptors for controller (mandatory for FM installations):
 - APPLETON ST-50 PLUS STG-50 or STB-50 PLUS STG-50.
 - Reusable ONLY with replacement ferrule STF-50.
 - O.Z. GEDNEY 4Q-50, 4Q50T or 4Q-50TG.
4.4.3 Cable Glands (N. American – 0.5in) – Fig. 4.5

Warning.
- Controller glands must be fitted with a face seal.
- Torque settings (hubs only) – 20ft. lbs minimum, 25ft. lbs. maximum.
- Outer nuts – hand tight plus a half turn only.

Information.
- Suitable Cable Glands: (mandatory for FM installations):
 - O.Z. GEDNEY
 - SR-50-375 or SR-504
 - APPLETON
 - CG 3150 or CG-3150S (and STG-50 sealing ring).
 - THOMAS & BETTS
 - 2521.
- When fitting cable glands to the controller, start with an outer gland and also temporarily fit a gland at the opposite end, to aid location of the transmitter gland plate. Fit and tighten glands consecutively from initial gland.
4.5 Connections Summary – Fig. 4.6

Information.
Input impedances:
- Low voltage (mV) > 10MΩ
- Voltage > 10MΩ
- Current 10Ω.

Fig. 4.6 Terminal Block Identification
<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>AC Supply</th>
<th>Process Variable Input or 2-wire Tx Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>24V, 115V or 230V a.c.</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N/O</td>
<td>Relay 1 Output</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Motorized Valve Control Relay (open)</td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td>– see Fig. 4.17</td>
</tr>
<tr>
<td>6</td>
<td>N/O</td>
<td>Relay 2 Output</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>Motorized Valve Control Relay (close)</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td>– see Fig. 4.17</td>
</tr>
<tr>
<td>9</td>
<td>N/O</td>
<td>Relay 3 Output</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>Alarm Relays</td>
</tr>
<tr>
<td>11</td>
<td>N/C</td>
<td>– see Fig. 4.17</td>
</tr>
<tr>
<td>12</td>
<td>3rd lead/2-wire TX</td>
<td>Process Variable Input or 2-wire Tx Power Supply</td>
</tr>
<tr>
<td>13</td>
<td>Input 1+</td>
<td>– see Figs. 4.7 to 4.9, 4.12 and 4.14</td>
</tr>
<tr>
<td>14</td>
<td>Input 1–</td>
<td>– see Fig. 4.13</td>
</tr>
<tr>
<td>15</td>
<td>3rd lead</td>
<td>Remote Set Point Input – see Figs. 4.7 to 4.12 and 4.14</td>
</tr>
<tr>
<td>16</td>
<td>Input 2+</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Input 2–</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Tx+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tx–</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Rx+</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Rx–</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>Retransmission Output/Cool Output – see Fig. 4.15</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>+</td>
<td>Current Proportioning Control Output/Heat Output Fig. 4.15</td>
</tr>
<tr>
<td>26</td>
<td>–</td>
<td>or 12V Logic Control Output Fig. 4.16</td>
</tr>
<tr>
<td>27</td>
<td>3rd lead</td>
<td>Position Feedback Input – see Figs. 4.18, 4.19A and 4.19B</td>
</tr>
<tr>
<td>28</td>
<td>Input 3+</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Input 3–</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Logic Input 1 – see Figs. 4.20 and 4.21</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Logic Input 2 – see Figs. 4.20 and 4.21</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Common</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Electrical Connections
4.6 Input Connections
Make connections to each input, as shown in Figs 4.4 to 4.14, first removing any factory-fitted wire links not required.

4.6.1 Thermocouple (THC) Inputs – Fig. 4.7

* Note. Automatic Cold Junction Compensation (ACJC) is active when an input is programmed for use with thermocouples. Use the correct compensating cable between the THC and the terminals – see Table 4.2.

If an external fixed cold junction is used, the connections to the instrument must be made with copper cable. The input must be programmed for mV input signals and the appropriate THC linearizer selected – see Sections 4.5 and 4.6 of the Programming Guide.

<table>
<thead>
<tr>
<th>Type of Thermocouple</th>
<th>BS1843</th>
<th>ANSI MC 96.1</th>
<th>DIN 43714</th>
<th>BS4937 Part No.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr/Ni-Al (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Brown</td>
<td>+ Yellow</td>
<td>+ Red</td>
<td>+ Green</td>
<td></td>
</tr>
<tr>
<td>– Blue</td>
<td>– Red</td>
<td>– Green</td>
<td>– White</td>
<td></td>
</tr>
<tr>
<td>Case Red</td>
<td>Case Yellow</td>
<td>Case Green</td>
<td>Case Green</td>
<td></td>
</tr>
<tr>
<td>Nicrisil/Nisil (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Orange</td>
<td>+ Orange</td>
<td>+ Red</td>
<td>+ Pink</td>
<td></td>
</tr>
<tr>
<td>– Blue</td>
<td>– Red</td>
<td>– White</td>
<td>– White</td>
<td></td>
</tr>
<tr>
<td>Case Orange</td>
<td>Case Orange</td>
<td>—</td>
<td>Case Pink</td>
<td></td>
</tr>
<tr>
<td>Pt/Pt-Rh (R and S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ White</td>
<td>+ Black</td>
<td>+ Red</td>
<td>+ Orange</td>
<td></td>
</tr>
<tr>
<td>– Blue</td>
<td>– Red</td>
<td>– White</td>
<td>– White</td>
<td></td>
</tr>
<tr>
<td>Case Green</td>
<td>Case Green</td>
<td>Case White</td>
<td>Case Orange</td>
<td></td>
</tr>
<tr>
<td>Cu/Cu-Ni (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ White</td>
<td>+ Blue</td>
<td>+ Red</td>
<td>+ Brown</td>
<td></td>
</tr>
<tr>
<td>– Blue</td>
<td>– Red</td>
<td>– White</td>
<td>– White</td>
<td></td>
</tr>
<tr>
<td>Case Blue</td>
<td>Case Blue</td>
<td>Case Brown</td>
<td>Case Brown</td>
<td></td>
</tr>
<tr>
<td>Fe/Con (J)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Yellow</td>
<td>+ White</td>
<td>+ Red</td>
<td>+ Black</td>
<td></td>
</tr>
<tr>
<td>– Blue</td>
<td>– Red</td>
<td>– White</td>
<td>– White</td>
<td></td>
</tr>
<tr>
<td>Case Black</td>
<td>Case Black</td>
<td>Case Blue</td>
<td>Case Black</td>
<td></td>
</tr>
</tbody>
</table>

* Case Blue for intrinsically safe circuits

Table 4.2 Thermocouple Compensating Cables

4.6.2 3-lead Resistance Thermometer (RTD) Inputs – Fig. 4.8

The three leads must have equal resistance, not exceeding 50Ω each.

4.6.3 2-lead Resistance Thermometer (RTD) Inputs – Fig. 4.9

If long leads are necessary it is preferable to use a 3-lead RTD. If the RTD is to be used in a hazardous area a 3-lead RTD must be used.

4.6.4 Links for Unused Inputs

To reduce susceptibility to electro-magnetic interference, ensure that the three terminals on each unused input are shorted together with sleeved wire links.
4 ELECTRICAL INSTALLATION...

Fig. 4.7 Thermocouple Input Connections

Remote Set Point
Process Variable

Sleeved Link

Fig. 4.8 3-lead Resistance Thermometer Input Connections

Remote Set Point
Process Variable

Red
White
Red

Fig. 4.9 2-lead Resistance Thermometer Input Connections

Remote Set Point
Process Variable

Sleeved Link

White
Red

Fig. 4.10 3-lead Resistance Remote Set Point Input Connections

Remote Set Point
Process Variable

Sleeved Link

Fig. 4.11 2-lead Resistance Remote Set Point Input Connections

Remote Set Point
Process Variable

Fig. 4.12 Current Input Connections

Remote Set Point
Process Variable

Sleeved Link

Fig. 4.13 2-wire Transmitter Power Supply Input Connections

Remote Set Point
Process Variable

Fig. 4.14 Voltage Input Connections

Remote Set Point
Process Variable

Fig. 4.15 Current Proportioning Control and Retransmission Output Connections

Remote Set Point
Process Variable

Fig. 4.16 Logic Control Output Connections

Remote Set Point
Process Variable

12V Logic Output for ON/OFF or Time-proportioning Control

Retransmission O/P or 'Cool' Analogue O/P in Heat/Cool

Current Proportioning Control Output

12V Logic Output for ON/OFF or Time-proportioning Control
4.7 Output Connections
Make connections as shown in Figs 4.15 and 4.16.

4.8 Relay Connections – Fig. 4.17
For relay functions refer to the following table.

<table>
<thead>
<tr>
<th>Relay 1</th>
<th>Relay 2</th>
<th>Relay 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Control</td>
<td>✓</td>
<td>—</td>
</tr>
<tr>
<td>Time Prop.(Heat)</td>
<td>✓</td>
<td>—</td>
</tr>
<tr>
<td>Time Prop.(Cool)</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>Motorized Valve</td>
<td>Open</td>
<td>Close</td>
</tr>
<tr>
<td>Alarm</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

4.9 Motorized Valve Connections – Figs. 4.18 and 4.19

Note. Link must be connected at the motorized valve drive terminals and not the Controller terminals.
4.10 Logic Input Connections – Figs. 4.20 and 4.21
Each logic input can be programmed to perform one of a number of functions – see Section 3.10 of the Programming Guide.

Fig. 4.20 Standard Logic Input Functions

Fig. 4.21 Additional Logic Input Functions for Profile Selection

* Note. Only one function may be performed by each input at any one time.
4.11 Power Supply Selection and AC Connections – Fig. 4.22

A – Selecting the Supply Voltage

B – Power Supply Connections

Fig. 4.22 Power Supply Selection and AC Connections
<table>
<thead>
<tr>
<th>Connection/Terminal Number</th>
<th>Power Supply</th>
<th>Relay 1 Output</th>
<th>Relay 2 Output</th>
<th>Relay 3 Output</th>
<th>Process Variable Input</th>
<th>Remote Set Point Input</th>
<th>Modbus Serial Communications Option 1 only</th>
<th>Retransmission Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>3rd Link Positions</td>
<td>3rd Link Positions</td>
<td>Termination Resistors</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>Link Positions</td>
<td>Link Positions</td>
<td>Linked-out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>mA mV/THC/RTD V 2-wire</td>
<td>mA mV/THC/RTD V</td>
<td>Linked-in</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tick Box)</td>
<td>(Tick Box)</td>
<td>(Tick Box)</td>
<td>(Tick Box)</td>
</tr>
<tr>
<td>Power Supply</td>
<td>230V AC</td>
<td>Output Type:</td>
<td>Output Type:</td>
<td>Output Type:</td>
<td>Output Type:</td>
<td>Output Type:</td>
<td>Output Type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115V AC</td>
<td>Output Function:</td>
<td>Output Function:</td>
<td></td>
<td></td>
<td></td>
<td>Output Function:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24V AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Type:
- Relay 1 Output:
- Relay 2 Output:
- Relay 3 Output:
- Process Variable Input:
- Remote Set Point Input:
- Modbus Serial Communications Option 1 only:
- Retransmission Output:

Output Function:
- Relay 1 Output:
- Relay 2 Output:
- Relay 3 Output:
- Process Variable Input:
- Remote Set Point Input:
- Modbus Serial Communications Option 1 only:
- Retransmission Output:
Connection/Terminal Number

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
<th>Control Output</th>
<th>Position Feedback Input</th>
<th>Logic Input 1</th>
<th>Logic Input 2</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Output</td>
<td></td>
<td>25 +</td>
<td>26 –</td>
<td>27 3rd</td>
<td>28 +</td>
<td>29 –</td>
</tr>
<tr>
<td>Position Feedback Input</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Link Positions (Tick Box)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...4 ELECTRICAL INSTALLATION
OMEGAnet® On-Line Service
http://www.omega.com

Servicing North America:

USA: One Omega Drive, Box 4047
Stamford, CT 06907-0047
Tel: (203) 359-1660
e-mail: info@omega.com

Canada: 976 Bergar
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
e-mail: info@omega.ca

For immediate technical or application assistance:

USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA™
Customer Service: 1-800-622-2378 / 1-800-622-BEST™
Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN™
TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and Latin America: Tel: (95) 800-826-6342
En Español: (95) 203-359-7803
e-mail: espanol@omega.com

Servicing Europe:

Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands
Tel: (31) 20 6418405
Toll Free in Benelux: 0800 0993344
e-mail: nl@omega.com

Czech Republic: ul. Rude armady 1868, 733 01 Karvina-Hranice
Tel: (420) 69 6311899
Toll Free: 0800-1-66342
e-mail: czech@omega.com

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
e-mail: france@omega.com

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
e-mail: info@omega.de

United Kingdom: One Omega Drive, River Bend Technology Centre
Northbank, Irlam, Manchester
M44 5EX, United Kingdom
Tel: 44 (161) 777-6611
Toll Free in the United Kingdom: 0800-488-488
e-mail: info@omega.co.uk

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.
Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gauges
- Load Cells & Pressure Gauges
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments