Digital Pressure Gauges with Alarms and 4-20 mA Output

DPG1000DAR Series

M3363/0818

Ranges and Resolution
See table below. Resolution is fixed as indicated in table.

<table>
<thead>
<tr>
<th>Dual Alarms, 4-20 mA Output</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPG1000DAR-30V100</td>
<td>–30.0 inHg to 100.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-30INHVAC</td>
<td>0.00-30.0 inHg Vac</td>
</tr>
<tr>
<td>DPG1000DAR-05G</td>
<td>0.00-5.000 psig</td>
</tr>
<tr>
<td>DPG1000DAR-15A</td>
<td>0.00-15.0 psia</td>
</tr>
<tr>
<td>DPG1000DAR-15G</td>
<td>0.00-15.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-30A</td>
<td>0.0-30.0 psia</td>
</tr>
<tr>
<td>DPG1000DAR-30G</td>
<td>0.0-30.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-100A</td>
<td>0.0-100.0 psia</td>
</tr>
<tr>
<td>DPG1000DAR-100G</td>
<td>0.0-100.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-300G</td>
<td>0-300.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-500G</td>
<td>0-500.0 psig</td>
</tr>
<tr>
<td>DPG1000DAR-1KG</td>
<td>0-1000 psig</td>
</tr>
<tr>
<td>DPG1000DAR-2KG</td>
<td>0-2000 psig</td>
</tr>
<tr>
<td>DPG1000DAR-3KG</td>
<td>0-3000 psig</td>
</tr>
<tr>
<td>DPG1000DAR-5KG</td>
<td>0-5000 psig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm Setting (All are field configurable)</th>
<th>Alarm Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1N (default if not specified)</td>
<td>HI/LO Normal action</td>
</tr>
<tr>
<td>-2N</td>
<td>HI/HI Normal action</td>
</tr>
<tr>
<td>-3N</td>
<td>LO/LO Normal action</td>
</tr>
<tr>
<td>-1R</td>
<td>HI/LO Reverse action</td>
</tr>
<tr>
<td>-2R</td>
<td>HI/HI Reverse action</td>
</tr>
<tr>
<td>-3R</td>
<td>LO/LO Reverse action</td>
</tr>
</tbody>
</table>

Accuracy
Accuracy includes linearity, hysteresis, repeatability ±0.25% of full scale ±1 least significant digit
Sensor hysteresis: ±0.015% FS, included in accuracy
Sensor repeatability: ±0.01% FS, included in accuracy

Display
4 readings per second nominal display update rate
4 digit LCD, 0.5” H and 5 character 0.25” H alphanumeric
Alarm 1 and Alarm 2 LCD indicators and bi-color (red/green) LEDs

Controls & Functions
SEL Select and display alarm trip points
TEST Alarm acknowledge, or toggle alarms when in test mode
▼ Increase alarm setpoint when in setpoint adjust mode
▼ Decrease alarm setpoint when in setpoint adjust mode
Multi-level pass code protection for set-up and calibration

Alarm Relay Outputs
Programmable dual form C (SPDT) relay contacts for HI/LO, HI/HI, LO/LO, normal or reverse acting with 1% deadband, or adjustable trip and reset points for each relay, manual or auto acknowledge.
1A/24 VDC, 0.5 A/115 VAC, non-inductive
120 milliseconds typical response time
4-20 mA Retransmission Output
Updated approximately 16 times per second
Current output, 4-20 mA DC
Output drive (compliance) determined by power source
6,553 counts over sensor range

Calibration
Non-interactive, ±10% of range
All pressure and absolute models: zero, midpoint, span
All vacuum models: –span, –midpoint, zero
Vacuum/pressure models: –span, zero, +midpoint, +span
±15 psi models: –span, –midpoint, zero, +midpoint, +span

Power
8 to 24 VAC 50/60 Hz or 9 to 32 VDC
Gauge is on when power is on
Designed for continuous operation
1.0 watt maximum power consumption

Weight
9.5 ounces (approx.), shipping wt. 1 pound (approx.)

Housing
Extruded aluminum case, epoxy powder coated, ABS/ polycarbonate bezel, front and rear gaskets, polycarbonate label

Connection, Material, Media Compatibility
1/4” NPT fitting only

Environmental
Storage temperature: –40 to 203°F (–40 to 95°C)
Operating temperature: –4 to 185°F (–20 to 85°C)
Compensated temperature: 32 to 158°F (0 to 70°C)

WARNING: This product can expose you to chemicals including lead, nickel and chromium, which are known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
Installation Precautions

- Read these instructions before using the gauge. Configuration may be easier before installation. Contact the factory for assistance.
- These products do not contain user-serviceable parts. Contact us for repairs, service, or refurbishment.
- Gauges must be operated within specified ambient temperature ranges.
- Outdoor or wash-down applications require a NEMA 4X gauge or installation in a NEMA 4X housing.
- Use a pressure or vacuum range appropriate for the application.
- Use fittings appropriate for the pressure range of the gauge.
- Due to the hardness of 316 stainless steel, it is recommended that a thread sealant be used to ensure leak-free operation.
- For contaminated media use an appropriate screen or filter to keep debris out of gauge port.
- Remove system pressures before removing or installing gauge.
- Install or remove gauge using a wrench on the hex fitting only. Do not attempt to turn gauge by forcing the housing.
- Do not exceed relay current and voltage ratings. Use an appropriate contactor for larger loads. Inductive inrush currents may be up to 5x normal current and may require an RC snubber.
- Good design practice dictates that positive displacement liquid pumps include protection devices to prevent sensor damage from pressure spikes, acceleration head, and vacuum extremes.
- Avoid permanent sensor damage! Do not apply vacuum to non-vacuum gauges or hydrogen to any gauges.
- Avoid permanent sensor damage! NEVER insert objects into gauge port or blow out with compressed air.
- Gauges are not for oxygen service. Accidental rupture of sensor diaphragm may cause silicone oil inside sensor to react with oxygen.
- Never connect the gauge wires directly to 115 VAC or permanent damage will result.

Types of Gauges

Gauge reference models read zero with the gauge port open.

- Compound ranges read vacuums in units of Mercury, pressure in psig, and zero with the gauge port open.
- 1000 psi and higher sensors are a sealed reference type. They read zero with the gauge port open are internally referenced to 14.7 psig. They are functionally similar to gauge reference sensors.
- Absolute reference gauges read zero at full vacuum and atmospheric pressure with the gauge port open.
- Note that readings of atmospheric pressure vary continuously.

Electrical Connections

The DAR 4-conductor cable with the RED and BLACK leads is for the gauge power supply.

Power

The gauge is powered on whenever a supply voltage is applied. Warm-up time is negligible. The gauge may be left on at all times. All configuration information is stored in non-volatile memory.

When power is first applied, the gauge proceeds through a startup sequence. During the startup sequence, relays are de-energized, the status LEDs are off, and the retransmission output is low (0 mA).

1. The firmware version number is displayed briefly.
2. All active display segments are turned on for approx. 1 second.
3. The full scale pressure is indicated for approx. 1 second while the engineering units and FS (full scale) are indicated for 1/2 second on the character display.
4. The display is tested again for approximately 1 second.

The gauge then proceeds to the normal operating mode. For DAR models the retransmission output corresponds to the applied pressure.

Alarm Types

The factory default configuration is 1% fixed deadband mode, zero tare enabled, and no pass code required for test function.

Alarms may be configured to operate in fixed deadband mode or adjustable hysteresis mode.

In the fixed deadband mode, the alarm set/reset point deadband is factory set to 1% of full-scale. Each alarm may be configured as either HI or LO with a user adjustable alarm set point for each relay.

In the adjustable hysteresis mode, two independent set and reset trip points are user adjustable for each relay. The set or reset state at power up when between trip points is user configurable.

Operation with Fixed Deadband Alarms

Each relay may be independently configured as a high or low alarm in User Set-up and operate as shown in the table below.

Normal acting, high alarm SP_H, LED = GREEN

<table>
<thead>
<tr>
<th>Pressure</th>
<th>< Set point − 1%FS</th>
<th>> Set point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay coil</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Alarm 1 continuity</td>
<td>C-NO (Red-White)</td>
<td>C-NC (Red-Black)</td>
</tr>
<tr>
<td>Alarm 2 continuity</td>
<td>C-NO (Brown-Green)</td>
<td>C-NC (Brown-Green)</td>
</tr>
</tbody>
</table>

Normal acting, low alarm SP_L, LED = RED

<table>
<thead>
<tr>
<th>Pressure</th>
<th>< Set point</th>
<th>> Set point + 1%FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay coil</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Alarm 1 continuity</td>
<td>C-NC (Red-Black)</td>
<td>C-NO (Red-White)</td>
</tr>
<tr>
<td>Alarm 2 continuity</td>
<td>C-NC (Brown-Green)</td>
<td>C-NO (Brown-Blue)</td>
</tr>
</tbody>
</table>

Reverse acting, high alarm SP_H, LED = RED

<table>
<thead>
<tr>
<th>Pressure</th>
<th>< Set point − 1%FS</th>
<th>> Set point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay coil</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Alarm 1 continuity</td>
<td>C-NC (Red-Black)</td>
<td>C-NO (Red-White)</td>
</tr>
<tr>
<td>Alarm 2 continuity</td>
<td>C-NC (Brown-Green)</td>
<td>C-NO (Brown-Blue)</td>
</tr>
</tbody>
</table>

Reverse acting, low alarm SP_L, LED = GREEN

<table>
<thead>
<tr>
<th>Pressure</th>
<th>< Set point</th>
<th>> Set point + 1%FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay coil</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Alarm 1 continuity</td>
<td>C-NO (Red-White)</td>
<td>C-NC (Red-Black)</td>
</tr>
<tr>
<td>Alarm 2 continuity</td>
<td>C-NO (Brown-Blue)</td>
<td>C-NC (Brown-Green)</td>
</tr>
</tbody>
</table>

The relevant LED alarm icon will indicate an alarm condition. The relevant bi-color LED will be illuminated green for a normal condition or red for an alarm condition.

The LED will blink at a slow rate until the alarm is acknowledged unless the annunciator mode was disabled in set-up. Alarms may be configured to be automatically acknowledged when the alarm condition clears or configured to be manually acknowledged by pressing the TEST button.

The applied pressure, the SET trip points, and the RESET trip points may be selected for display as follows:

- While the applied pressure is being displayed, press and release the SEL button. The upper display will indicate the value of set point 1 with ‘RST_1’ on the lower display. When set point 1 is being displayed, press and release the SEL button. The upper display will indicate the value of reset point 1 with ‘RST_1’ on the lower display.
- While reset point 1 is being displayed, press and release the SEL button. The upper display will indicate the value of set point 2 with ‘RST_2’ on the lower display. While set point 2 is being displayed, press and release the SEL button. The upper display will indicate the value of reset point 2 with ‘RST_2’ on the lower display.
- While the reset point 2 is being displayed, press and release the SEL button. The upper display will indicate the applied pressure and engineering units.

Alarm Contacts

- The D DAR models have a 4-20 mA retransmission output that corresponds to the applied pressure, except when in zero/tare mode, test mode, or during setup. Characteristics of the output types are listed below.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Full vacuum</th>
<th>"0" on display</th>
<th>Full pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge ref. pressure</td>
<td>n/a</td>
<td>4 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Gauge ref. vacuum</td>
<td>20 mA</td>
<td>4 mA</td>
<td>n/a</td>
</tr>
<tr>
<td>Absolute reference</td>
<td>4 mA</td>
<td>4 mA</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

See specifications for output resolution. Note that analog output resolution is always over the entire sensor range and is updated approximately 16 times per second.

The 4-20 mA output provides power to the current loop and output drive is determined by power source.
Pass Code Entry
A pass code is required to calibrate and configure the gauge. Additional levels of security may be enabled by defining separate pass codes for calibration, user configuration, and output test and set point adjust modes. See Changing the User-Defined Pass Code at the end of this manual to change pass codes.

Functions in user configuration mode
- Restore original factory configuration
- Enable/disable zero tare function
- Fixed 1% deadband or adjustable hysteresis mode of operation
- Operation for blinking alarm LEDs
- Set point modes (high alarm/low alarm or state at power-up)
- Relay action mode (normal/reverse)
- DAR model retransmission output upper and lower limits
- Enable/disable a pass code for output test and set point adjust

When the gauge enters a mode requiring a pass code, the display indicates "_ _ _ _" with the first underscore blinking, and either TSTPC, CFGPC, CALPC on the lower display.

To exit the Zero/Tare mode, press the SEL button. The relays will maintain their prior state. The gauge will automatically revert to the normal operation if it is operated for approximately 15 seconds.

Press and release the SEL button to set the left-most digit to 3.
Press and release the SEL button to index to the next position. 3 will remain, and the second position will be blinking.
Press the SEL button to select 0.
Press and release the SEL button to proceed.

If an incorrect pass code was entered, the gauge will exit to the normal operating mode. Upon successful pass code entry, follow the steps in the appropriate section of this manual.

Zero Tare Mode
If the gauge is not indicating zero with zero pressure applied but is within approximately 3% of full scale pressure of zero, you may tare the gauge to zero. This feature may be enabled or disabled. Absolute ranges are configured with this feature turned off.

Open the gauge port open to atmosphere, press and hold both the SEL and TEST buttons and press the SEL button. The relay outputs and the retransmission output will hold the last value, and the visual indicators will be deactivated. Release all buttons when the display indicates 0 0 0 0.

The display will indicate a newly calculated zero tare value with 0 OFF on the lower display. Note: If not within approximately 3% of zero, Err0 will be displayed. Press the SEL button to cancel the operation and return to normal operating mode without affecting any existing zero tare value.

Zero the Gauge zero reading will cancel and remove any existing zero tare value, press and release the TEST button. The display will indicate zero. To restore the newly calculated zero tare value, press and release the TEST button.

To exit the Zero/Tare mode, press and release the SEL button. The gauge will return to normal operation.

Output Test Mode
From the normal operating mode, press and hold the TEST button and press the SEL button. Release both buttons when the display indicates the desired test point.
If pass code protection is enabled, the display indicates "_ _ _ _" with the left-most underscore blinking, and either TSTPC, CFGPC, CALPC on the lower display.

Enter the pass code as described in the Pass Code Entry section.

While in the Test mode with no buttons pressed, the display will indicate the current zero/tare reading units blinking at a slow rate.
When the TEST button is pressed, the LED indicators and the relays will toggle to their opposite states. The display will indicate the preset test value with TEST on the lower display, and the retransmission output upper and lower limits will correspond to the test value.
Pressing the TEST button will increase or decrease the test value. Note that the gauge will respond to changes in applied pressure while the TEST button is held unused.
When the TEST button is released, the display, the LED indicators, and the relay outputs will correspond to the applied pressure.
Press and release the SEL button to exit the Output Test mode and return to normal operation.

Adjust Setpoint, Fixed Deadband Mode
- "Setpoint" is defined as the pressure value that will result in a change of state only from a normal to an alarm condition.
- "Trip Point" is defined as the pressure value that will result in a change of state from alarm condition, and includes the effect of deadband from returning to an alarm condition.

Setpoint 1
From the normal operating mode press the SEL button to display Trip Point 1. Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates "_ _ _ _" with the left-most underscore blinking, and with TSTPC on the display.

Enter the pass code as described in the Pass Code Entry section.

While in the Setpoint 1 Adjust mode with no buttons pressed, the display will indicate Trip Point 1 with TRIP1 blinking at a slow rate on the lower display, and the alarm indicators and the retransmission output will correspond to the applied pressure.
To adjust the Setpoint 1 value, press and hold the TEST button. The display will indicate Setpoint 1 with SP1 on the lower display.
Operate the and buttons to adjust Setpoint 1 to the desired value. Release the TEST button to display the new value.

Note: The gauge will not respond to changes in applied pressure while the TEST button is pressed. The alarm relays, LEDs, LCD alarm icons, and the DAR output will maintain their prior states until the TEST button is released.

To exit the Setpoint 1 Adjust mode and return to the normal operating mode, press and release the SEL button.

Setpoint 2
From the normal operating mode press the SEL button twice to display Trip Point 2.
Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates "_ _ _ _" with the left-most underscore blinking, and with TSTPC on the display.

If pass code protection is enabled, before the unit enters the Setpoint 2 Adjust Mode, the display indicates "_ _ _ _" with the left-most underscore blinking, and with TSTPC on the display.

Enter the pass code as described in the Pass Code Entry section.

While in the Setpoint 2 Adjust mode with no buttons pressed, the display will indicate Trip Point 2 with TRIP2 blinking at a slow rate on the lower display, and the alarm indicators and the retransmission output will correspond to the applied pressure.
To adjust the Setpoint 2 value, press and hold the TEST button. The display will indicate Setpoint 2 with SP2 on the lower display.
Operate the and buttons to adjust Setpoint 2 to the desired value. Release the TEST button to display the new value.

If pass code protection is enabled, before the unit enters the Setpoint 2 Adjust Mode, the display indicates "_ _ _ _" with the left-most underscore blinking, and with TSTPC on the lower display.

To exit the Setpoint 2 Adjust mode and return to normal operating mode, press and release the SEL button.

Adjust Trip Point, Adjustable Hysteresis Mode
From the normal operating mode press the SEL button to display the desired trip point (SET_1, RST_1, SET_2, or RST_2).
Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates "_ _ _ _" with the left-most underscore blinking, and with TSTPC on the lower display.

While in the Trip Point Adjust mode with no buttons pressed, the display will indicate the trip point value with its designator (SET_1, RST_1, SET_2, or RST_2) blinking at a slow rate.
To adjust the displayed trip point value, press and hold the TEST button. The display will continue to indicate the trip point value.
Operate the and buttons to adjust the trip point to the desired value. Operation of the TEST button will be released.

If pass code protection is enabled, before the unit enters the Trip Point Adjust Mode, the display indicates "_ _ _ _" with the DAR output upper and lower limits.

To exit the Trip Point Adjust mode and return to the normal operating mode, press and release the SEL button.

User Configuration
From the normal operating mode, press and hold the TEST and the SEL buttons.
Then press the SEL button.
Release all buttons when the display indicates CFG.
Before the gauge enters the Configuration mode, the display initially indicates "_ _ _ _" with the first underscore blinking, and with CFGPC on the lower display.

Enter the pass code as described in the Pass Code Entry section.

Restore Factory Configuration
The upper display will be blank, and the lower display will display either USER_ or FCTRY_.

If USER_ is selected, the existing user configuration will be retained and will be accessible for modification in the following steps. To select USER_, press and release the TEST button. The lower display will indicate USER_.

If FCTRY_ is selected, the existing user configuration will be replaced by the configuration as it left the factory and will be accessible for modification in the following steps. To select FCTRY_, press and release the TEST button. The lower display will indicate FCTRY_.

Press and release the SEL button to move on to the next parameter.

Restore Factory Configuration
The upper display will be blank, and the lower display will display either either ZTARE or NOZT.

If ZTARE is selected, the user will be able to manually zero the gauge from the normal operating mode.

To select ZTARE, press and release the TEST button. The lower display will indicate ZTARE.

If NOZT is selected, the user will be prevented from zeroing the gauge from the normal operating mode. This is default setting for absolute reference ranges.

To select NOZT, press and release the TEST button. The lower display will indicate NOZT.

Press and release the SEL button to move on to the next parameter.

Alarm Annunciation Function Selection
The lower display will either indicate DBAND or ADJ_H.
If DBAND is selected, each output relay will operate with a 1% of full-scale deadband between set and reset.

To select DBAND, press and release the TEST button. The lower display will indicate DBAND.

If ADJ_H is selected, each output relay will have an adjustable SET point and an adjustable RESET point.

To select ADJ_H, press and release the TEST button. The lower display will indicate ADJ_H.

Press and release the SEL button to move on to the next parameter.

Alarm Action Selection (Fixed Deadband Configuration)
The lower display will display either SP1_L or SP1_H.

If SP1_L is selected Alarm 1 will be a low alarm. Alarm 1 will be SET when the pressure falls below Setpoint 1. Alarm 1 will be RESET when the pressure rises above Setpoint 1 plus the preset deadband. To select SP1_L press and release the TEST button. The lower display will indicate SP1_L.

If SP1_H is selected Alarm 1 will be a high alarm. Alarm 1 will be SET when the pressure rises above Setpoint 1. Alarm 1 will be RESET when the pressure falls below Setpoint 1 minus the preset deadband. To select SP1_H press and release the TEST button. The lower display will indicate SP1_H.

Press and release the SEL button to change to Alarm 2.

The upper display will be blank, and the lower display will display either either SP2_L or SP2_H.

If SP2_L is selected Alarm 2 will be a low alarm. Alarm 2 will be SET...
User Configuration—cont.
when the pressure falls below Setpoint 2. Alarm 2 will be reset when the pressure rises above Setpoint 2 plus the preset deadband. To select SP2_L, press and release the ▼ button. The lower display will indicate SP2_L.
If SP2_H is selected Alarm 2 will be a high alarm. Alarm 2 will be set when the pressure rises above Setpoint 2 minus the preset deadband. To select SP2_H, press and release the ▲ button. The lower display will indicate SP2_H.
Press and release the SEL button to move to the next parameter.
Relay Action Selection (Fixed Deadband Configuration)
Press and release the SEL button to save the configuration parameters and restart the unit. Note: the configuration parameters will not be saved if the procedure is interrupted before completion.
Relay Power Up State (Adjustable Hysteresis configuration)
The lower display will indicate SP2_L or SP2_H.
If SP1_L is selected and the gauge is powered up while the applied pressure is between the Output 1 SET and RESET trip points, Output 1 will begin in the RESET state. To select SP1_L, press and release the ▼ button. The lower display will indicate SP1_L.
If SP1_H is selected and the gauge is powered up while the applied pressure is between the Output 1 SET and RESET trip points, Output 1 will begin in the SET state. To select SP1_H, press and release the ▲ button. The lower display will indicate SP1_H.
Press and release the SEL button to move to Relay 2.
The upper display will be blank, and the lower display will display either SP2_L or SP2_H.
If SP2_L is selected and the gauge is powered up while the applied pressure is between the Output 2 SET and RESET trip points, Output 2 will begin in the RESET state. To select SP2_L, press and release the ▼ button. The lower display will indicate SP2_L.
If SP2_H is selected and the gauge is powered up while the applied pressure is between the Output 2 SET and RESET trip points, Output 2 will begin in the SET state. To select SP2_H, press and release the ▲ button. The lower display will indicate SP2_H.
Press and release the SEL button to move to the next parameter.
Relay Action Selection (Adjustable Hysteresis Configuration)
The upper display will be blank, and the lower display will display either _NOR_ or _REV_.
If _NOR_ is selected, the output relay coils will be energized in the RESET state and de-energized in the SET state (normal action).
To select _NOR_, press and release the ▼ button. The lower display will indicate _NOR_.
If _REV_ is selected, the output relay coils will be de-energized in the RESET state and energized in the SET state (reverse action). To select _REV_, press and release the ▲ button. The lower display will indicate _REV_.
Press and release the SEL button to move to the next parameter.
Relay Power Up State (Adjustable Hysteresis configuration)
The lower display will display either SP1_L or SP1_H.
Calibration Preparation
The gauge is calibrated at the factory using equipment traceable to NIST. There is no need to calibrate the gauge before putting it into service. Calibration should only be performed by qualified individuals using appropriate calibration standards and procedures.
The calibration equipment should be at least four times more accurate than the gauge being calibrated. The calibration system must be able to generate and measure pressure/vacuum over the full range of the gauge. A vacuum pump able to produce a vacuum of 100 microns (0.1 torr or 100 millitorr) or lower is required for vacuum and absolute gauges.
For DAR models use an accurate volt or mA meter for calibration of the retransmission output.
Allow the gauge to equalize to normal room temperature (about 20 minutes minimum) before calibration.
Calibration
To enter the calibration mode from the normal operating mode with applied pressure being displayed, press and hold the TEST and the ▲ buttons. Then press the SEL button. Release all buttons when the display indicates CAL.
When the gauge enters the calibration mode, the display initially indicates _CAL_—with the first underscore blinking, and with CALPC on the lower display.
Enter the pass code as described in the Pass Code Entry section.
Upon successful calibration pass code entry, the upper display will indicate the applied pressure in the configured engineering units.
The lower display of the device will alternate between CAL and the calibration region corresponding to the applied pressure (ZERO, ±MID, +SPAN, MD, or SPAN).
Note: To store the calibration parameters and exit calibration mode at any time, press and hold the SEL button until the display indicates CFG.
Calibration of the Retransmission Output (DAR only)
Calibration of the retransmission output coordinates the retransmission output to the display indication, and is performed independently of applied pressure. It requires a direct physical measurement of the retransmission output.
Retransmission Output Low Value (DAR only)
Press and release the SEL button to step to the retransmission output low value calibration sequence. Use the SEL button to change the display indication from _CAL_ to _LO_. Then press the SEL button. Release all buttons when the display indicates CAL.
Press and release the SEL button to move to the next parameter.
Pressure Calibration
The pressure calibration procedure adjusts the display indication, and for DAR models also the retransmission output, to correspond to the actual applied pressure.
If the applied pressure is not being displayed, press and release the SEL button to step to the pressure calibration sequence, indicated by CAL on the display.
Calibration—cont.
Note: If the SEL button is held depressed for longer than 2 seconds, the display will change to indicate _CAL_—_LO_, and the gauge will exit the calibration mode when all buttons are released.
Note: the calibration mode will alternate between CAL and ZERO. Use the ▲ and ▼ buttons to adjust the upper display to indicate zero. Span calibration: Apply full-scale pressure. The lower display will alternate between CAL and +SPAN. Use the ▲ and ▼ buttons to adjust the upper display to indicate the applied pressure value. Midpoint Non-Linearity calibration: Apply 50% full-scale positive pressure. The lower display will alternate between CAL and -MID. Use the ▲ and ▼ buttons to adjust the upper display to indicate the applied pressure value.
Negative Span calibration (bipolar and compound ranges only): Apply full-scale negative pressure. The lower display will alternate between CAL and SPAN. Use the ▲ and ▼ buttons to adjust the upper display to indicate the applied pressure value.
Changing the User-Defined Pass Codes
Configuration Pass Code
From the normal operating mode, press and hold the TEST and the ▲ buttons. Then press the SEL button. Release all buttons when the display indicates CFG.
Press and release the SEL button to step to the low-limit digit of 1. Press and release the SEL button to index to the next position. The 1 will remain, and the second position will be blinking.
Press and release the SEL button to step to the second digit of 1. Press and release the SEL button to index to the next position. 1 2 will remain, and the third position will be blinking.
Press and release the SEL button to step to the third digit of 1. Press and release the SEL button to index to the next position. 1 2 3 will remain, and the fourth position will be blinking.
Press and release the SEL button to proceed. Note: If an incorrect pass code was entered, the gauge will exit to the normal operating mode.
Test and Set Point Adjust Pass Code (optional)
From the normal operating mode, press and hold the TEST button. Then press the SEL button. Release all buttons when the display indicates CAL.
Press and release the SEL button to step to the low-limit digit of 1. Press and release the SEL button to index to the next position. The 1 will remain, and the second position will be blinking.
Press and release the SEL button to step to the second digit of 1. Press and release the SEL button to index to the next position. 1 2 will remain, and the third position will be blinking.
Press and release the SEL button to step to the third digit of 1. Press and release the SEL button to index to the next position. 1 2 3 will remain, and the fourth position will be blinking.
Note: During pass code entry, the LEDs will be off and the gauge will not respond to changes in applied pressure. The output relays will maintain their prior states and the retransmission output will maintain its prior value. The gauge will automatically revert to normal operation if no buttons are operated for approximately 15 seconds.
Enter Factory Pass Code 1220
Use the ▲ and ▼ buttons to set the first digit of 1. Press and release the SEL button to step the second digit of 1. Press and release the SEL button to step the third digit of 1. Press and release the SEL button to step the fourth digit of 1. Press and release the SEL button to step the fifth digit of 1. Press and release the SEL button to step the sixth digit of 1. Press and release the SEL button to index to the next position. The 1 will remain, and the second position will be blinking.
Press and release the SEL button to step to the second digit of 1. Press and release the SEL button to index to the next position. 1 2 will remain, and the third position will be blinking.
Press and release the SEL button to step to the third digit of 1. Press and release the SEL button to index to the next position. 1 2 3 will remain, and the fourth position will be blinking.
Press and release the SEL button to proceed. Note: If an incorrect pass code was entered, the display will indicate the existing pass code with CFPC, CFPC, or TSTPC on the lower display.
Note: While in the pass code change mode, the LEDs will extinguish if the pass code was entered, the gauge will exit to the normal operating mode. Once the correct password has been entered, the display will indicate the existing pass code with CFPC, CFPC, or TSTPC on the character segments.
Note: While in the pass code change mode, the LEDs will extinguish and the unit will not respond to changes in applied pressure and the output relays will be de-energized.
Operate the ▲ or ▼ button to select the first character of the calibration pass code.
When the correct first character is being displayed, press and release the SEL button to proceed to the next password character. Repeat 1 & 2 above until the entire password is complete.
To exit the User-Defined Pass Code change mode, press and hold the SEL button. Release the button when the display indicates _CAL_—_LO_—_LO_ — and reverts in the normal operating mode.
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product. If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS / INQUIRIES
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.
Where Do I Find Everything I Need for Process Measurement and Control?
OMEGA...Of Course!
Shop online at omega.com

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gages
- Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Communications-Based Acquisition Systems
- Data Logging Systems
- Wireless Sensors, Transmitters, & Receivers
- Signal Conditioners
- Data Acquisition Software

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments