These tables are presented for use as a guide when making infrared temperature measurements with the OMEGASCOPE® or other infrared pyrometers. The total emissivity (ε) for Metals, Non-metals and Common Building Materials are given.

Since the emissivity of a material will vary as a function of temperature and surface finish, the values in these tables should be used only as a guide for relative or delta measurements. The exact emissivity of a material should be determined when absolute measurements are required.

Metals

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. °F (°C)</th>
<th>ε - Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished</td>
<td>100 (38)</td>
<td>.03</td>
</tr>
<tr>
<td>Highly Polished</td>
<td>100 (38)</td>
<td>.02</td>
</tr>
<tr>
<td>Rolled</td>
<td>100 (38)</td>
<td>.64</td>
</tr>
<tr>
<td>Rough</td>
<td>100 (38)</td>
<td>.74</td>
</tr>
<tr>
<td>Molten</td>
<td>1000 (538)</td>
<td>.15</td>
</tr>
<tr>
<td>Molten</td>
<td>1970 (1077)</td>
<td>.16</td>
</tr>
<tr>
<td>Nicked Plated</td>
<td>100-500 (38-260)</td>
<td>.37</td>
</tr>
<tr>
<td>Dow Metal</td>
<td>0.4-600 (–18-316)</td>
<td>.15</td>
</tr>
<tr>
<td>Gold</td>
<td>212 (100)</td>
<td>.37</td>
</tr>
<tr>
<td>Elmax</td>
<td>(0001)</td>
<td></td>
</tr>
<tr>
<td>Plate on .0005 Silver</td>
<td>200-750 (93-399)</td>
<td>.11-.14</td>
</tr>
<tr>
<td>Plate on .0005 Nickel</td>
<td>200-750 (93-399)</td>
<td>.07-.09</td>
</tr>
<tr>
<td>Polished 1000-2000 (538-1093)</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Haynes Alloy C</td>
<td>600-2000 (316-1093)</td>
<td>.90-.96</td>
</tr>
<tr>
<td>Haynes Alloy X</td>
<td>600-2000 (316-1093)</td>
<td>.86-.89</td>
</tr>
<tr>
<td>Inconel Sheet 700 (371)</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>Inconel Sheet 500 (260)</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Inconel Sheet 300 (150)</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Inconel X, Polished</td>
<td>75 (24)</td>
<td>.19</td>
</tr>
<tr>
<td>Inconel B, Polished</td>
<td>75 (24)</td>
<td>.21</td>
</tr>
<tr>
<td>Iron</td>
<td>212 (100)</td>
<td>.74</td>
</tr>
<tr>
<td>Oxidized</td>
<td>930 (499)</td>
<td>.84</td>
</tr>
<tr>
<td>2190 (1199)</td>
<td>.89</td>
<td></td>
</tr>
<tr>
<td>Nickel Plated 100-500 (38-260)</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>Nickel Plated 75 (25)</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>Wrought Iron</td>
<td>2760-3220 (1516-1771)</td>
<td>.42-.45</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>390 (199)</td>
<td>.64</td>
</tr>
<tr>
<td>Oxidized</td>
<td>1110 (596)</td>
<td>.78</td>
</tr>
<tr>
<td>Unoxidized</td>
<td>212 (100)</td>
<td>.21</td>
</tr>
<tr>
<td>Strong Oxidation</td>
<td>40 (104)</td>
<td>.95</td>
</tr>
<tr>
<td>Strong Oxidation</td>
<td>482 (250)</td>
<td>.93</td>
</tr>
<tr>
<td>Liquid</td>
<td>2795 (1535)</td>
<td>.95</td>
</tr>
<tr>
<td>Dull</td>
<td>77 (25)</td>
<td>.94</td>
</tr>
<tr>
<td>Dull</td>
<td>660 (349)</td>
<td>.94</td>
</tr>
<tr>
<td>Smooth Polished</td>
<td>100 (38)</td>
<td>.35</td>
</tr>
<tr>
<td>Polished</td>
<td>100 (38)</td>
<td>.28</td>
</tr>
<tr>
<td>Lead</td>
<td>100-500 (38-260)</td>
<td>.06-.08</td>
</tr>
<tr>
<td>Rough</td>
<td>100 (38)</td>
<td>.43</td>
</tr>
<tr>
<td>Oxidized</td>
<td>100 (38)</td>
<td>.43</td>
</tr>
<tr>
<td>Oxidized at 1100°F</td>
<td>100 (38)</td>
<td>.63</td>
</tr>
<tr>
<td>Gray Oxidized</td>
<td>100 (38)</td>
<td>.28</td>
</tr>
<tr>
<td>Magnesium 100-500 (38-260)</td>
<td>.07-.13</td>
<td></td>
</tr>
<tr>
<td>Magnesium Oxide1880-3410 (1027-1727)</td>
<td>.16-.20</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>32 (0)</td>
<td>.09</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>100 (38)</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>500 (260)</td>
<td>.08</td>
</tr>
<tr>
<td></td>
<td>1000 (538)</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>2000 (1093)</td>
<td>.18</td>
</tr>
<tr>
<td></td>
<td>600 (316)</td>
<td>.80</td>
</tr>
<tr>
<td></td>
<td>700 (371)</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>800 (427)</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>900 (482)</td>
<td>.83</td>
</tr>
<tr>
<td></td>
<td>1000 (538)</td>
<td>.82</td>
</tr>
<tr>
<td>Monel, Ni-Qu</td>
<td>392 (200)</td>
<td>.41</td>
</tr>
<tr>
<td>Monel, Ni-Qu</td>
<td>752 (404)</td>
<td>.44</td>
</tr>
<tr>
<td>Monel, Ni-Qu Oxidized</td>
<td>1112 (606)</td>
<td>.46</td>
</tr>
<tr>
<td>Monel, Ni-Qu Oxidized</td>
<td>68 (20)</td>
<td>.43</td>
</tr>
</tbody>
</table>

Non-Metals and Common Building Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. °F (°C)</th>
<th>ε - Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>100 (38)</td>
<td>.87</td>
</tr>
<tr>
<td>Cuprous Oxide</td>
<td>100 (38)</td>
<td>.77</td>
</tr>
<tr>
<td>Cuprous Oxide</td>
<td>100 (38)</td>
<td>.78</td>
</tr>
<tr>
<td>Black, Oxidized</td>
<td>100 (38)</td>
<td>.95</td>
</tr>
<tr>
<td>Brazil</td>
<td>100 (38)</td>
<td>.22</td>
</tr>
<tr>
<td>Roughly Polished</td>
<td>100 (38)</td>
<td>.07</td>
</tr>
</tbody>
</table>
METALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp °F (°C)</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium</td>
<td>300-1200 (149-649)</td>
<td>0.8-1.9</td>
</tr>
<tr>
<td>Alloy C110M, Polished</td>
<td>200-800 (93-371)</td>
<td>0.51-0.61</td>
</tr>
<tr>
<td>*Oxidized at 538°C (1000°F)</td>
<td>200-800 (93-371)</td>
<td>0.35-0.48</td>
</tr>
<tr>
<td>Nonoxidized</td>
<td>200-600 (93-316)</td>
<td>0.96-0.92</td>
</tr>
</tbody>
</table>

NON-METALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp °F (°C)</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>68 (20)</td>
<td>0.90</td>
</tr>
<tr>
<td>Asbestos Board</td>
<td>100 (38)</td>
<td>0.96</td>
</tr>
<tr>
<td>Cement, Red</td>
<td>2500 (1371)</td>
<td>0.67</td>
</tr>
<tr>
<td>Ceramic, White</td>
<td>2500 (1371)</td>
<td>0.65</td>
</tr>
<tr>
<td>Cloth</td>
<td>198 (93)</td>
<td>0.90</td>
</tr>
<tr>
<td>Paper</td>
<td>100-700 (38-371)</td>
<td>0.93</td>
</tr>
<tr>
<td>Slate</td>
<td>68 (20)</td>
<td>0.97</td>
</tr>
<tr>
<td>Asphalt, pavement</td>
<td>100 (38)</td>
<td>0.93</td>
</tr>
<tr>
<td>Asphalt, tar paper</td>
<td>68 (20)</td>
<td>0.93</td>
</tr>
<tr>
<td>Basalt</td>
<td>68 (20)</td>
<td>0.72</td>
</tr>
<tr>
<td>Brick</td>
<td>70 (21)</td>
<td>0.93</td>
</tr>
<tr>
<td>Gault Cream</td>
<td>2500-5000 (1371-2760)</td>
<td>0.26-0.30</td>
</tr>
<tr>
<td>Fire Clay</td>
<td>2500 (1371)</td>
<td>0.75</td>
</tr>
<tr>
<td>Light Buff</td>
<td>1000 (538)</td>
<td>0.80</td>
</tr>
<tr>
<td>Lime Clay</td>
<td>2500 (1371)</td>
<td>0.43</td>
</tr>
<tr>
<td>Fire Brick</td>
<td>1832 (1000)</td>
<td>0.75-0.80</td>
</tr>
<tr>
<td>Magnesite, Refractory</td>
<td>1832 (1000)</td>
<td>0.38</td>
</tr>
<tr>
<td>Gray Brick</td>
<td>2012 (1100)</td>
<td>0.75</td>
</tr>
<tr>
<td>Silica, Glazed</td>
<td>2000 (1093)</td>
<td>0.88</td>
</tr>
<tr>
<td>Silica, Unglazed</td>
<td>2000 (1093)</td>
<td>0.80</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2500-5000 (1371-2760)</td>
<td>0.59-0.63</td>
</tr>
<tr>
<td>Barborundum</td>
<td>1880 (1010)</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Paints

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp °F (°C)</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints, Oil</td>
<td>200 (93)</td>
<td>0.92-0.96</td>
</tr>
<tr>
<td>Black</td>
<td>200 (93)</td>
<td>0.92</td>
</tr>
<tr>
<td>Bright, Galvanized</td>
<td>100 (38)</td>
<td>0.86</td>
</tr>
<tr>
<td>Commercial 99.1%</td>
<td>500 (260)</td>
<td>0.95</td>
</tr>
<tr>
<td>Galvanized</td>
<td>100 (38)</td>
<td>0.28</td>
</tr>
<tr>
<td>Oxidized</td>
<td>500-1000 (280-538)</td>
<td>0.11</td>
</tr>
<tr>
<td>Painted</td>
<td>100 (38)</td>
<td>0.02</td>
</tr>
<tr>
<td>Polished</td>
<td>100 (38)</td>
<td>0.91</td>
</tr>
<tr>
<td>Polished</td>
<td>500 (260)</td>
<td>0.94</td>
</tr>
<tr>
<td>Polished</td>
<td>1000 (538)</td>
<td>0.06</td>
</tr>
<tr>
<td>Polished</td>
<td>2500 (1371)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Gases

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp °F (°C)</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium Oxide</td>
<td>1880 (1027)</td>
<td>0.79</td>
</tr>
<tr>
<td>Zircon</td>
<td>Bright, Galvanized</td>
<td>500 (260)</td>
</tr>
<tr>
<td>Commercial 99.1%</td>
<td>500 (260)</td>
<td>0.95</td>
</tr>
<tr>
<td>Galvanized</td>
<td>100 (38)</td>
<td>0.28</td>
</tr>
<tr>
<td>Oxidized</td>
<td>500-1000 (280-538)</td>
<td>0.11</td>
</tr>
<tr>
<td>Painted</td>
<td>100 (38)</td>
<td>0.02</td>
</tr>
<tr>
<td>Polished</td>
<td>100 (38)</td>
<td>0.91</td>
</tr>
<tr>
<td>Polished</td>
<td>500 (260)</td>
<td>0.94</td>
</tr>
<tr>
<td>Polished</td>
<td>1000 (538)</td>
<td>0.06</td>
</tr>
<tr>
<td>Polished</td>
<td>2500 (1371)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Other Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp °F (°C)</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zircon</td>
<td>2500-5000 (1371-2760)</td>
<td>0.59-0.63</td>
</tr>
<tr>
<td>Barborundum</td>
<td>1880 (1010)</td>
<td>0.92</td>
</tr>
<tr>
<td>Earthenware, Matte</td>
<td>70 (21)</td>
<td>0.90</td>
</tr>
<tr>
<td>Greens No. S210-2C</td>
<td>200-750 (93-399)</td>
<td>0.98-0.82</td>
</tr>
<tr>
<td>Coating No. C20A</td>
<td>200-750 (93-399)</td>
<td>0.75-0.77</td>
</tr>
<tr>
<td>Porcelain</td>
<td>72 (22)</td>
<td>0.92</td>
</tr>
<tr>
<td>White Al2O3</td>
<td>200 (93)</td>
<td>0.90</td>
</tr>
<tr>
<td>Zirconia on Iron</td>
<td>400-1200 (200-650)</td>
<td>0.62-0.45</td>
</tr>
<tr>
<td>Clay</td>
<td>68 (20)</td>
<td>0.39</td>
</tr>
<tr>
<td>* Fired</td>
<td>158 (70)</td>
<td>0.91</td>
</tr>
<tr>
<td>* Shale</td>
<td>68 (20)</td>
<td>0.69</td>
</tr>
<tr>
<td>* Shale, Light Red</td>
<td>2500-5000 (1371-2760)</td>
<td>0.32-0.34</td>
</tr>
<tr>
<td>* Shale, Deep Purple</td>
<td>2500-5000 (1371-2760)</td>
<td>0.78</td>
</tr>
<tr>
<td>Concrete</td>
<td>32-2000 (0-1093)</td>
<td>0.94</td>
</tr>
<tr>
<td>Tiles, Natural</td>
<td>2500-5000 (1371-2760)</td>
<td>0.62-0.63</td>
</tr>
<tr>
<td>*Brown</td>
<td>2500-5000 (1371-2760)</td>
<td>0.87-0.83</td>
</tr>
<tr>
<td>*Black</td>
<td>2500-5000 (1371-2760)</td>
<td>0.94-0.91</td>
</tr>
<tr>
<td>Cotton Cloth</td>
<td>68 (20)</td>
<td>0.77</td>
</tr>
<tr>
<td>Dolomite Lime</td>
<td>68 (20)</td>
<td>0.41</td>
</tr>
<tr>
<td>Emery Corundum</td>
<td>176 (80)</td>
<td>0.86</td>
</tr>
<tr>
<td>Glass</td>
<td>212 (100)</td>
<td>0.80</td>
</tr>
<tr>
<td>Convex D</td>
<td>600 (316)</td>
<td>0.80</td>
</tr>
<tr>
<td>Convex D</td>
<td>932 (500)</td>
<td>0.76</td>
</tr>
<tr>
<td>Convex D</td>
<td>212 (100)</td>
<td>0.82</td>
</tr>
<tr>
<td>Nonex</td>
<td>600 (316)</td>
<td>0.82</td>
</tr>
<tr>
<td>Nonex</td>
<td>932 (500)</td>
<td>0.78</td>
</tr>
<tr>
<td>Smooth</td>
<td>32-200 (0-93)</td>
<td>0.92-0.94</td>
</tr>
</tbody>
</table>
More than 100,000 Products Available!

- **Temperature**

- **Flow and Level**
 Air Velocity Indicators, Doppler Flowmeters, Level Measurement, Magnetic Flowmeters, Mass Flowmeters, Pitot Tubes, Pumps, Rotameters, Turbine and Paddle Wheel Flowmeters, Ultrasonic Flowmeters, Valves, Variable Area Flowmeters, Vortex Shedding Flowmeters

- **pH and Conductivity**
 Conductivity Instrumentation, Dissolved Oxygen Instrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis Instrumentation

- **Data Acquisition**

- **Pressure, Strain and Force**
 Displacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, Pressure Reference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators, Strain Gages, Torque Transducers, Valves

- **Heaters**

click here to go to the omega.com home page